2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 o-малое от комплексной функции
Сообщение14.03.2024, 19:24 


23/02/12
3434
Пусть $s=u+iv$, тогда $|x^s|=x^u$. Например, $|x^{1,1+i}|=x^{1,1}$.

Поэтому:
$f(x)=o(x^{1,1+i})$ и $f(x)=o(x^{1,1})$

исходя из определения о-малого, означает:
$\lim_{x \to \infty} \frac{|f(x)|}{|x^{1,1+i}|}=\lim_{x \to \infty} \frac{|f(x)|}{x^{1,1}}=0$.

Правильно я понимаю?

 Профиль  
                  
 
 Re: o-малое от комплексной функции
Сообщение15.03.2024, 07:51 
Заслуженный участник


16/02/13
4214
Владивосток
Ну, по идее, да.

 Профиль  
                  
 
 Re: o-малое от комплексной функции
Сообщение16.03.2024, 10:33 


23/02/12
3434
iifat
Спасибо!

 Профиль  
                  
 
 Re: o-малое от комплексной функции
Сообщение04.07.2024, 12:16 


21/12/16
1439
vicvolf в сообщении #1632831 писал(а):
Пусть $s=u+iv$, тогда $|x^s|=x^u$. Например, $|x^{1,1+i}|=x^{1,1}$.

Поэтому:
$f(x)=o(x^{1,1+i})$ и $f(x)=o(x^{1,1})$

исходя из определения о-малого, означает:
$\lim_{x \to \infty} \frac{|f(x)|}{|x^{1,1+i}|}=\lim_{x \to \infty} \frac{|f(x)|}{x^{1,1}}=0$.

Правильно я понимаю?

зависит от того, является ли число $x$ действительным или комплексным, и что понимается под степенью

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Alex Krylov


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group