Напомните пожалуйста, откуда взялись эти формулы,
Ровно из Ваших выкладок сверху: возводим комплексное число в квадрат как экспоненту и как сумму, приравниваем действительные и мнимые части, profit! Более упоротый способ: формулы синуса и косинуса суммы углов, приравниваем первый угол ко второму, profit! Ещё более упоротый способ: нарисовать
биссектрису треугольника (памагити) u что-то там посчитать... profit не гарантирован.
Ничего упоротого нет во втором и третьем способе, они методически вернее первого способа. Первый способ демонстрирует знание общей формулы, но не её происхождения.
Формула двойного угла слишком частная чтоб её отдельно выводить. Формулу суммы углов можно найти по пути Ваших 1-го и 3-го способов:
1) вводим формальную «комплексную экспоненту», выражающуюся через формальные синус и косинус. Приходим к выводу, что формальные синус и косинус должны удовлетворять обычным формулам синуса и косинуса суммы, чтоб формальная экспонента обладала свойствами обычной экспоненты. Думаем как вычислять и применять введённые функции, в частности в треугольниках.
3) рисуя треугольники, приходим к выводу, что есть удобные функции синус и косинус. Рисуя новые треугольники, выводим формулу суммы углов. Обнаруживаем, что, используя синус и косинус, можно построить «комплексную экспоненту», удовлетворяющую свойствам обычной экспоненты. Думаем как вычислять и применять введённые функции помимо треугольников.
-- 01.12.2023, 15:17 --Я давно хотел понять, или может прочувствовать, связь между числами Пи и e (или между экспонентой и окружностью). Возможно, теперь это стало ближе.
. Без всяких комплексных чисел.
Связь то очень простая:
Надо поставить задачу - какой должна быть искомая связь.