2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Найти сумму ряда
Сообщение20.02.2023, 12:35 


23/02/12
3400
Требуется найти сумму ряда:

$\sum_p {\frac {-2p^3+p^2+3}{p^5}}$, где р - простое число.

 Профиль  
                  
 
 Re: Найти сумму ряда
Сообщение22.02.2023, 15:46 


23/02/12
3400
Подсказка - использовать тождество Эйлера.
Вопрос - как использовать?
Я сначала попробовал прологарифмировать его в лоб, но получается большая ошибка.

 Профиль  
                  
 
 Re: Найти сумму ряда
Сообщение22.02.2023, 21:41 
Заслуженный участник


18/09/21
1768
$-2P(2)+P(3)+3P(5)$, где $P(s)$ - Prime zeta function.

 Профиль  
                  
 
 Re: Найти сумму ряда
Сообщение23.02.2023, 10:29 


23/02/12
3400
zykov в сообщении #1582868 писал(а):
Спасибо за информацию об этой функции, но хотел бы получить ответ через дзета-функцию Римана. По-возможности более точный.

 Профиль  
                  
 
 Re: Найти сумму ряда
Сообщение24.02.2023, 10:55 


23/02/12
3400
Решение

При действительном числе $s>1$ справедливо тождество Эйлера:
$$\prod_p {(1-1/p^s)}	=1/\zeta(s)$$
Прологарифмируем и получим:
$$-\ln(\zeta(s))=\ln(\prod_p {(1-1/p^s)}=\sum_p{\ln(1-1/p^s)}\sim-\sum{1/p^s}$$
Отсюда получаем:
$$\sum{1/p^s}\sim \ln(\zeta(s))$$
Но это не точная формула, так как там знак эквивалентности.

А вот точная формула (см. ссылку выше):
$$\sum_p {\frac{1}{p^s}}=\sum_{n>0}{\frac{\mu(n)}{n}\ln(\zeta(ns))}=\ln(\zeta(s))-\frac{\ln(\zeta(2s))}{2}-\frac{\ln(\zeta(3s))}{3}-...$$
Отсюда следует ответ:
$$\sum_p {\frac {-2p^3+p^2+3}{p^5}}=\sum_{n>0}{\frac{\mu(n)}{n}\ln(\frac{\zeta(3n)\zeta^3(5n)}{\zeta^2(2n)})}$$

 Профиль  
                  
 
 Re: Найти сумму ряда
Сообщение24.02.2023, 11:56 
Заслуженный участник


18/09/21
1768
Как-то не олимпиадно.
Там на википедии была формула $P(s)=\sum _{n>0}\mu (n){\frac {\log \zeta (ns)}{n}}$.
Её подставить в $-2P(2)+P(3)+3P(5)$ и будет этот ответ.

 Профиль  
                  
 
 Re: Найти сумму ряда
Сообщение24.02.2023, 13:59 


23/02/12
3400
zykov А Вы видели где-нибудь в задачниках примеры на определение суммы сходящихся степенных рядов простых чисел?

 Профиль  
                  
 
 Re: Найти сумму ряда
Сообщение24.02.2023, 14:10 
Заслуженный участник


18/09/21
1768
олимпиадность - это не тематика (есть же всякие нишевые области), а ход решения

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group