2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Concerning Squares
Сообщение21.11.2022, 18:18 
Аватара пользователя
Вот тут дали школьную задачку (не со спичками) из глубин Ютюба:
Доказать, что $\forall n \;\;\exists m:\;mn=i^2, \;(n+1)(m+1)=j^2$
Всё натурально, конечно.
Ну по недавней привычке поюзал PARI, правдоподобно порассуждал и несложное решение получил. Решил обобщить:
Какова ситуация с $k:\forall n \exists m:\text{ issquare(mn) }\&\& \;\text{issquare(n+k)(m+k)}$
Для $k\in\{1,2,4\}$ дело разрешается формулой
$\forall n\;m=n\left(\dfrac4k\cdot n+3\right)^2$ Например, при $k=4$
$n\cdot n(n+3)^2=\left(n^2+3n\right)^2;\;\;(n+4)\;\cdot\;\left(n(n+3)^2+4\right)=\left(n^2+5n+4\right)^2$
Но как доказать, что для остальных $k$ существуют такие $n$, что для них нельзя подобрать такое $m$, которое в двух произведениях $nm$ и $(n+k)(m+k)$ даёт полные квадраты.
Где вообще подобное изучается? Я ещё продолжаю размышления :wink:

 
 
 
 Re: Concerning Squares
Сообщение21.11.2022, 20:19 
Аватара пользователя
В некоторых случаях можно строго доказать, что, например, при $k=3; n=1$ квадратных пар не образуется. Ведь для первого произведения подходят только квадраты, то есть $1\cdot m^2=m^2$, но $(1+3)(m^2+3)$ очевидно квадратом быть не может при $m>1$.
А вот для составных $n$ могут быть сюрпризы. При $k=3; n=20$ для первого произведения подойдёт $m=45:\;20\cdot45=30^2$, а для второго первое подходящее число $m=132845:\;20\cdot 132845=1630^2;\;(20+3)(132845+3)=1748^2$

 
 
 
 Re: Concerning Squares
Сообщение21.11.2022, 20:49 
Просто мысли. Если рассмотреть $(x-m)(x-n)=0$, тогда уравнение $x^2-(j^2-i^2-k^2)/k x+i^2=0$ таково, что при заданном $k$, выбрав подходящие $i,j$, получим, что один из корней может быть равен произвольному натуральному числу $n$.

 
 
 
 Re: Concerning Squares
Сообщение22.11.2022, 11:31 
Конечно, для любых $n,k$ решения существуют, причем бесконечно много, если случайно и $n$, и $n+k$ не окажутся точными квадратами.

Хотя бы потому, что $m=n$ удовлетворят условию. Все сводится к обобщенному уравнению Пелля.

Пусть даны $n,k$ такие, что $n=au^2, n+k=bv^2$, где $a,b$ - свободные от квадратов. Это означает, что уравнени Пелля

$bX^2-aY^2=k$ имеет хотя бы одно решение ($X=v,Y=u$) и следовательно будут бесконечно много решений $X_t,Y_t$

и $m=aY_t^2$ будет решение для любого $t$.

Пример: вы проигнорировали $k=3$. Проверим как дела при $n=2,k=3$ Будем искать $m=2y^2$ из уравнения

$5x^2-2y^2=3$ - первое нетривиальное решение $x=7,y=11$. И все $m=2\cdot 11^2$ и есть решение.

Обобщим: если $n$ и $n+k$ являются одновременно квадратами, то решений для $m$ будет конечное число, в противном случае - бессконечное.

 
 
 
 Re: Concerning Squares
Сообщение22.11.2022, 13:23 
Аватара пользователя
Я, увы, пропустил условие, что второе число должно быть строго больше первого.
Иначе, конечно, $n\cdot n;\; (n+k)\cdot(n+k)$ всегда квадраты.
Но другое условие не забыл: Для данного $\;k:\;\forall n\;\exists m$. Для $k=3$ уже для $n=1$ нет подходящей пары (кроме него самого :-) ).
Впрочем, меня привлекла визуализация этого дела. Вот квадрат $(n\times m)$, где отмечены пары, для которых $n\cdot m$ полный квадрат.
01 *..*....*......*........*..........*............*..............*
02 .*.....*.........*.............*.................*..............
03 ..*........*..............*....................*................
04 *..*....*......*........*..........*............*..............*
05 ....*..............*........................*...................
06 .....*.................*.............................*..........
07 ......*....................*..................................*.
08 .*.....*.........*.............*.................*..............
09 *..*....*......*........*..........*............*..............*
10 .........*.............................*........................
11 ..........*................................*....................
12 ..*........*..............*....................*................
13 ............*......................................*............
14 .............*.........................................*........
15 ..............*............................................*....
16 *..*....*......*........*..........*............*..............*
17 ................*...............................................
18 .*.....*.........*.............*.................*..............
19 ..................*.............................................
20 ....*..............*........................*...................
21 ....................*...........................................
22 .....................*..........................................
23 ......................*.........................................
24 .....*.................*.............................*..........

жалко, что пропорции нарушены. Но я потихоньку осваиваю рисование в PARI :oops:

 
 
 
 Re: Concerning Squares
Сообщение22.11.2022, 13:37 
Аватара пользователя

(Оффтоп)

gris в сообщении #1570907 писал(а):
Впрочем, меня привлекла визуализация этого дела.
снегопад и прожектор на вышке
Городницкий писал(а):
В мокром царстве моем теремки по углам,
В драгоценных ошейниках серые волки

 
 
 
 Re: Concerning Squares
Сообщение22.11.2022, 14:08 
gris в сообщении #1570907 писал(а):
Для $k=3$ уже для $n=1$ нет подходящей пары (кроме него самого :-) )
Кажется понял, вас интересует при каких $k$ для любого $n$ существует хотя бы одно $m$. Тогда

При $k=1,4,4t+2$ - для любого $n$ найдутся бесконечно много $m$

Если $k$ - простое, либо квадрат простого, либо учетверенное простое, либо 16 - существует $n$, для которого не найдется $m \ne n$

В остальных случая для любого $n$ найдется $m \ne n$, но не обязательно больше.

-- 22.11.2022, 13:17 --

gris в сообщении #1570733 писал(а):
Но как доказать, что для остальных $k$ существуют такие $n$, что для них нельзя подобрать такое $m$, которое в двух произведениях $nm$ и $(n+k)(m+k)$ даёт полные квадраты.
Никак, если $k \equiv 2 \pmod 4$, то для любого $n$ найдутся, причем бесконечно много $m>n$ удовлетворяющие условию.

-- 22.11.2022, 13:37 --

Shadow в сообщении #1570930 писал(а):
Никак, если $k \equiv 2 \pmod 4$, то для любого $n$ найдутся, причем бесконечно много $m>n$ удовлетворяющие условию.
А вот тут я ошибся. Подумаем еще...

 
 
 
 Re: Concerning Squares
Сообщение22.11.2022, 15:48 
Да. Для любого $n$ всегда найдется $m>n$ удовлетворяющее условию тогда и только тогда, когда $k$ не представимо в виде

$a(u^2-v^2)$ для натуральных $a,u,v$. Где $a$ - свободное от квадратов.

Числа вида $4t+2$ не представимы в виде разности квадратов, что и меня немножко заблудило, но с дополнительным множителем уже почти все представимо.

Кроме, как было сказано, $k=\{1,2,4\}$

В противном случае, если $k=a(u^2-v^2)$, можем подобрать в качестве контрапримера $n=av^2$, где $v$ - максимально возможное. Тогда должно выполнятся $m=ax^2$

$n+k=au^2$, следователно должно выполнятся и $m+k=ay^2$, тоесть $ax^2+a(u^2-v^2)=ay^2$

Или $y^2-x^2=u^2-v^2$

Число $u^2-v^2$ может быть представимо разными способами в виде разности квадратов, тоест, какие-то решения для $x,y$ будут, но мы выбрали наибольшее $v$, а значит $(n=av^2) \ge (m=ax^2)$

 
 
 
 Re: Concerning Squares
Сообщение22.11.2022, 17:57 
Аватара пользователя
Shadow, спасибо! Я вдумчиво почитаю. А пока посмотрите, какая у меня картинка:
Изображение
Собственно, задача визуализируется сдвигом бесконечно большой картинки на нужное число пикселей и фотошопными манипуляциями для оставления дважды чорных пикселей :-) Например, для Сдвига на (+1,+1) на этой картинке останется главная диагональ и точки (1,49),(3,48), (48,3) и (49,1)

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group