2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Два одинаковых ряда
Сообщение11.11.2022, 17:57 
Аватара пользователя
Здравствуйте. Пусть $p_n\# = p_1 \cdot p_2 \cdot ... \cdot p_n$ - праймориал, где $p_i$-$i$-ое простое число. Также пусть$p_n\#^{(2)} = (p_2-2)(p_3-2)...(p_n-2)$
Я выяснил, что:
$1-\frac{p_n\#^{(2)}}{p_n\#} \equiv \frac{1}{2} + \sum_{i=2}^{n} \frac{2}{p_i}\frac{p_{i-1}\#^{(2)}}{p_{i-1}\#}$
Проблема в том, что выражение слева сходится к $1$ как $\frac{1}{(\ln{n})^2}$.
Скорость сходимости суммы справа же это $\Theta(\frac{1}{\ln{n}})$, т.к. по интегральному признаку Коши интеграл $\int_{a}^{n} \frac{1}{x(\ln{x})^2} = \frac{1}{\ln{a}} - \frac{1}{\ln{n}}$. Если они тождественны, то почему скорости разные? Или я что-то не так понимаю и признак нельзя так использовать?

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 18:09 
Аватара пользователя
Справа тоже $O\left(\frac{1}{(\ln n)^2}\right)$, потому что $p_n\sim n\ln n$, так что слагаемые справа имеют порядок $\frac{1}{i(\ln i)^3}$.

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 18:25 
Аватара пользователя
RIP в сообщении #1569740 писал(а):
Справа тоже $O\left(\frac{1}{(\ln n)^2}\right)$, потому что $p_n\sim n\ln n$, так что слагаемые справа имеют порядок $\frac{1}{i(\ln i)^3}$.

Не знал о таком свойстве. Я опечатался. Ряд слева сходится со скоростью $\frac{1}{(\ln{p_n})^2}$. А справа со скоростью $\frac{1}{\ln{p_n}}$. В таком случае как рассуждать?

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 18:26 
Аватара пользователя
$\ln p_n\sim \ln n$

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 18:32 
Аватара пользователя
RIP в сообщении #1569743 писал(а):
$\ln p_n\sim \ln n$

Тогда вроде бы получается. Спасибо.

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 19:38 
Аватара пользователя
RIP в сообщении #1569743 писал(а):
$\ln p_n\sim \ln n$

Так а в левом случае, если $p_n=x$, то в правом $i=\frac{x}{\ln{x}}$. Это же влияет на рассчеты, если я ничего не путаю.

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 19:46 
Аватара пользователя
При логарифмировании разница пропадает. Погрешность слева имеет порядок $\frac{1}{(\ln p_n)^2}$, но $p_n\sim n\ln n$, поэтому $\ln p_n=\ln n+\ln\ln n+o(1)\sim\ln n$. При не очень больших $n$ разница заметна, но в пределе при $n\to\infty$ разницы нет.

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 20:02 
Аватара пользователя
RIP в сообщении #1569751 писал(а):
При логарифмировании разница пропадает. Погрешность слева имеет порядок $\frac{1}{(\ln p_n)^2}$, но $p_n\sim n\ln n$, поэтому $\ln p_n=\ln n+\ln\ln n+o(1)\sim\ln n$. При не очень больших $n$ разница заметна, но в пределе при $n\to\infty$ разницы нет.

А, понял. А почему эти выражения слева и справа равны, вы случайно не знаете?

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 20:07 
Аватара пользователя
Euler-Maskerony в сообщении #1569754 писал(а):
А почему эти выражения слева и справа равны, вы случайно не знаете?
Если обозначить $r_n=\frac{p_n\#^{(2)}}{p_n\#}$, то
$$r_n=r_{n-1}\left(1-\frac{2}{p_n}\right)=r_{n-1}-\frac{2}{p_n}\,r_{n-1}=r_{n-2}-\frac{2}{p_{n-1}}\,r_{n-2}-\frac{2}{p_n}\,r_{n-1}=\dotsb$$

 
 
 
 Re: Два одинаковых ряда
Сообщение11.11.2022, 20:11 
Аватара пользователя
RIP в сообщении #1569755 писал(а):
Euler-Maskerony в сообщении #1569754 писал(а):
А почему эти выражения слева и справа равны, вы случайно не знаете?
Если обозначить $r_n=\frac{p_n\#^{(2)}}{p_n\#}$, то
$$r_n=r_{n-1}\left(1-\frac{2}{p_n}\right)=r_{n-1}-\frac{2}{p_n}\,r_{n-1}=r_{n-2}-\frac{2}{p_{n-1}}\,r_{n-2}-\frac{2}{p_n}\,r_{n-1}=\dotsb$$

Понятно. Спасибо.

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group