2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Оценка суммы ряда
Сообщение11.11.2022, 08:27 
Аватара пользователя
Здравствуйте. Есть ряд $S(n)$ и его ассимптотика ($p_i$ - $i$-ое простое число):
$\ln{S(n)} = \ln \prod \frac{p_i - 2}{p_i} = \sum \ln \left(1 - \frac{2}{p_i}\right) = \sum-\frac{2}{p_i} + \frac{f(i)}{p_i^2} = -2 \ln \ln n + g(n)$, где $f(i)$ и $g(n)$ ограничены.
Нужно найти знак: $\lim_{n\to\infty} \frac{1}{(\ln{n})^2} - S(n)$
Я могу попробовать написать программу, которая найдет разность при $n\approx 10^{12}$, но не факт, что знак определится так скоро. Я знаю, что эта разность уменьшается, но понятия не имею как найти ее конечный знак. Помогите, пожалуйста.

 
 
 
 Re: Оценка суммы ряда
Сообщение11.11.2022, 12:22 
Аватара пользователя
В википедии написано, что $|\sum_{p \leq n} \frac{1}{p} - \log \log n - M| \leq \frac{4}{\ln (n + 1)} + \frac{2}{n \ln n}$, где $M > 0.26$. Теперь если оценить снизу еще и логарифм (через остаточный член в форме Лагранжа, например), то вроде бы получается, что нам не так уж много членов нужно взять.

 
 
 
 Re: Оценка суммы ряда
Сообщение11.11.2022, 14:33 
Аватара пользователя
У Вас первый сомножитель $1-\frac{2}{p_1}=0$. Если его отбросить, то можно оценить грубо через третью теорему Мертенса:
$$\prod_{2<p\leqslant x}\left(1-\frac{2}{p}\right)<\frac{3}{4}\cdot\frac{15}{16}\cdot4\prod_{p\leqslant x}\left(1-\frac{1}{p}\right)^2<\frac{3\mathrm{e}^{-2\gamma}}{(\ln x)^2},$$
так что для больших $n$ верно $S(n)<\dfrac{3\mathrm{e}^{-2\gamma}}{(\ln n)^2}<\dfrac{1}{(\ln n)^2}$.

 
 
 
 Re: Оценка суммы ряда
Сообщение11.11.2022, 17:34 
Аватара пользователя
RIP в сообщении #1569720 писал(а):
У Вас первый сомножитель $1-\frac{2}{p_1}=0$. Если его отбросить, то можно оценить грубо через третью теорему Мертенса:
$$\prod_{2<p\leqslant x}\left(1-\frac{2}{p}\right)<\frac{3}{4}\cdot\frac{15}{16}\cdot4\prod_{p\leqslant x}\left(1-\frac{1}{p}\right)^2<\frac{3\mathrm{e}^{-2\gamma}}{(\ln x)^2},$$
так что для больших $n$ верно $S(n)<\dfrac{3\mathrm{e}^{-2\gamma}}{(\ln n)^2}<\dfrac{1}{(\ln n)^2}$.

Ого. Спасибо большое.

 
 
 
 Re: Оценка суммы ряда
Сообщение11.11.2022, 19:36 
Аватара пользователя
Для полноты картины: точное значение предела
$$\lim_{n\to\infty}(\ln n)^2\prod_{i=2}^{n}\left(1-\frac{2}{p}\right)=\lim_{n\to\infty}(\ln p_n)^2\prod_{i=2}^{n}\left(1-\frac{2}{p}\right)=4\mathrm{C}_2\mathrm{e}^{-2\gamma}=0.832429\dotso,$$
где $\mathrm{C}_2$ — постоянная простых близнецов, $\gamma$ — постоянная Эйлера–Маскерони.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group