2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 О коэффициентах одного степенного ряда
Сообщение03.12.2021, 23:48 
Вычисляя коэффициенты степенного ряда
$$\log \left( 1+\frac{{{x}^{2}}}{1-x} \right)=\sum\limits_{n=0}^{\infty }{{{a}_{n}}}{{x}^{n}}, \qquad{{a}_{0}}={{a}_{1}}=0, \qquad{{a}_{n}}=\sum\limits_{m=0}^{\left\lfloor {n}/{2}\; \right\rfloor -1}{\frac{{{\left( -1 \right)}^{m}}}{m+1}}\left( \begin{matrix}
   n-2-m  \\
   m  \\
\end{matrix} \right),$$
обнаружил интересный факт. Обозначим
$$\log \left( 1+\frac{x}{1-x} \right)=\sum\limits_{n=0}^{\infty }{{{b}_{n}}}{{x}^{n}}, \qquad{{b}_{0}}=0, \qquad{{b}_{n}}=\sum\limits_{m=0}^{n-1}{\frac{{{\left( -1 \right)}^{m}}}{m+1}}\left( \begin{matrix}
   n-1  \\
   m  \\
\end{matrix} \right)=\frac{1}{n}.$$
Тогда
$${{a}_{6n}}=-{{b}_{6n}}, \quad{{a}_{6n+1}}=0, \quad{{a}_{6n+2}}=2{{b}_{6n+2}}, \quad{{a}_{6n+3}}=3{{b}_{6n+3}}, \quad{{a}_{6n+4}}=2{{b}_{6n+4}}, \quad{{a}_{6n+5}}=0.$$
Хотелось бы узнать об этом ряде побольше. Вероятно, существует соответствующая литература. Буду благодарен за ссылки.

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение04.12.2021, 01:01 
$1+\frac{x}{1-x}=\frac{1}{1-x}=1+x+x^2+x^3+\ldots$

$1+\frac{x^2}{1-x}=\frac{1}{1-x}-x=1+x^2+x^3+\ldots$
Вряд ли об этом где-то специально написано.

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение04.12.2021, 02:33 
Аватара пользователя
Про связь между коэффициентами рядов. Обозначим
$\begin{array}{l}f(x)=\ln\left( 1+\dfrac{x}{1-x} \right)=\sum\limits_{n=0}^{\infty }b_n x^n\\g(x)=\ln\left( 1+\dfrac{x^2}{1-x} \right)=\sum\limits_{n=0}^{\infty } a_n x^n\end{array}$
Тогда
$\begin{array}{l}g(-x)=\ln\dfrac{1+x+x^2}{1+x}=\ln\dfrac{(1-e^{2\pi i/3}x)(1-e^{-2\pi i/3}x)}{1+x}=\\[2ex]=f(-x)-f(e^{2\pi i/3}x)-f(e^{-2\pi i/3}x)=\\[2ex]=\Bigl(f(x)+f(-x)\Bigr)-\Bigl(f(x)+f(e^{2\pi i/3}x)+f(e^{-2\pi i/3}x)\Bigr)\end{array}$
Выражения в первых и во вторых больших скобках можно преобразовать с помощью формулы для мультисекции ряда (применённой справа налево):
$\begin{array}{l}g(-x)=2\sum\limits_{m=0}^{\infty }b_{2m} x^{2m}-3\sum\limits_{m=0}^{\infty }b_{3m} x^{3m}=\\=\sum\limits_{n=0}^{\infty }\Bigl(2(b_{6n} x^{6n}+b_{6n+2} x^{6n+2}+b_{6n+4} x^{6n+4})-3(b_{6n} x^{6n}+b_{6n+3} x^{6n+3})\Bigr)\end{array}$
Отсюда получаются Ваши соотношения между коэффициентами $a_n$ и $b_n$. Так как это ряд функции $g(-x)$, а нам нужен ряд для $g(x)$, надо ещё поменять знак коэффициентов при нечётных степенях $x$, в формуле это только $b_{6n+3}$.

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение04.12.2021, 09:58 
Аватара пользователя
$\begin{array}{l}\ln\left( 1+\dfrac{x^2}{1-x} \right)=\ln( 1+x^3) - \ln( 1-x^2)
\\\ln\left( 1+\dfrac{x}{1-x} \right)=- \ln( 1-x)\end{array}$

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение04.12.2021, 20:41 
svv, TOTAL, вы подтвердили мои наблюдения, спасибо. Но для меня они остаются интригующими. Хотелось бы узнать об этом ряде побольше. Буду благодарен за ссылки на литературу по этой теме.

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение04.12.2021, 22:49 
EvgenB в сообщении #1541630 писал(а):
Но для меня они остаются интригующими
Вроде как всю интригу развеяли? Или где-то что-то непонятно?

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение05.12.2021, 14:45 
zykov, тут дело в моем «конструктивном» подходе. Я воспринимаю формальные степенные ряды как детали конструкции, общий план которой я не надеюсь разгадать, но надеюсь угадать планы отдельных блоков этой конструкции. В моем представлении, ряды
$$\log \left( \frac{1-x+{{x}^{2}}}{1-x} \right)=\sum\limits_{n=2}^{\infty }{{{a}_{n}}{{x}^{n}}} , \qquad{{a}_{n}}=\sum\limits_{m=0}^{\left\lfloor {n}/{2}\; \right\rfloor -1}{\frac{{{\left( -1 \right)}^{m}}}{m+1}\left( \begin{matrix}
   n-2-m  \\
   m  \\
\end{matrix} \right)},$$
$$\log \left( \frac{1+x+{{x}^{2}}}{1+x} \right)=\sum\limits_{n=2}^{\infty }{{{{\tilde{a}}}_{n}}{{x}^{n}}} , \qquad{{\tilde{a}}_{n}}={{\left( -1 \right)}^{n}}\sum\limits_{m=0}^{\left\lfloor {n}/{2}\; \right\rfloor -1}{\frac{{{\left( -1 \right)}^{m}}}{m+1}\left( \begin{matrix}
   n-2-m  \\
   m  \\
\end{matrix} \right)},$$
$$\log \left( 1+x+{{x}^{2}} \right)=\sum\limits_{n=1}^{\infty }{{{b}_{n}}}{{x}^{n}}, \qquad{{b}_{n}}=\sum\limits_{m=0}^{\left\lfloor {n}/{2}\; \right\rfloor }{\frac{{{\left( -1 \right)}^{n-m-1}}}{n-m}}\left( \begin{matrix}
   n-m  \\
   m  \\
\end{matrix} \right),$$
$$\log \left( 1-x+{{x}^{2}} \right)=\sum\limits_{n=1}^{\infty }{{{{\tilde{b}}}_{n}}}{{x}^{n}}, \qquad{{\tilde{b}}_{n}}={{\left( -1 \right)}^{n}}\sum\limits_{m=0}^{\left\lfloor {n}/{2}\; \right\rfloor }{\frac{{{\left( -1 \right)}^{n-m-1}}}{n-m}}\left( \begin{matrix}
   n-m  \\
   m  \\
\end{matrix} \right)$$
являются деталями одного из таких блоков. То, что коэффициенты этих рядов демонстрируют циклическую упорядоченность, для меня не снимает интригу, а наоборот усиливает.

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение07.12.2021, 16:02 
А что можно сказать о коэффициентах ряда

$$-\log \left( 1-\frac{{{x}^{2}}}{1-x} \right)=\sum\limits_{n=2}^{\infty }{{{c}_{n}}{{x}^{n}}}, \qquad{{c}_{n}}=\sum\limits_{m=0}^{\left\lfloor {n}/{2}\; \right\rfloor -1}{\frac{1}{m+1}}\left( \begin{matrix}
   n-2-m  \\
   m  \\
\end{matrix} \right)?$$
В статье http://www.mathnet.ru/php/archive.phtml ... n_lang=rus утверждается, что полином
$$\sum\limits_{m=0}^{\left\lfloor {n}/{2}\; \right\rfloor -1}{\frac{1}{m+1}}\left( \begin{matrix}
   n-2-m  \\
   m  \\
\end{matrix} \right){{x}^{m}}$$
имеет целочисленные коэффициенты только в случае, если $n$ – простое число. Таким образом, если $n$ – простое число, то коэффициент ${{c}_{n}}$ является целым числом. А можно сказать что-то более определенное о целочисленных коэффициентах этого ряда?

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение07.12.2021, 19:04 
EvgenB в сообщении #1541958 писал(а):
В статье http://www.mathnet.ru/php/archive.phtml ... n_lang=rus утверждается, что ...
Статья производит впечатления какого-то бреда сумасшедшего.

Интересно, что подвигает mathnet выкладывать у себя такие вот журналы.

-- Вт дек 07, 2021 23:25:50 --

EvgenB в сообщении #1541958 писал(а):
полином
$$\sum\limits_{m=0}^{\left\lfloor {n}/{2}\; \right\rfloor -1}{\frac{1}{m+1}}\left( \begin{matrix}
  n-2-m  \\
  m  \\
\end{matrix} \right){{x}^{m}}$$
имеет целочисленные коэффициенты только в случае, если $n$ – простое число.
Это верно, но почти очевидно.

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение07.12.2021, 20:43 
nnosipov - матнет аккуратно выкладывает содержание вошедших в него журналов, вопрос не к нему. Матнету и его коллективу как раз огромное спасибо и уважение, это наверное самый полезный ресурс в российском матсообществе. Вопрос к журналу, который эту муть опубликовал. Журнал очевидно мусорный, фактически без редколлегии, без профессионального главного редактора. Хотя Шамолин мог бы хотя бы номер пробежать глазами по названиям. Если есть желание - давайте напишем заявление коллегам на матнет, чтобы исключили этот журнал оттуда за публикацию малограмотной чуши. Мы с Вами два доктора, профессора. Может кто-то ещё присоединиться. Или не стоит?

 
 
 
 Re: О коэффициентах одного степенного ряда
Сообщение07.12.2021, 20:55 
novichok2018
Смысла не вижу.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group