Рискну высказать крамолу, но в числе
встречаются странные отклонения от чистой случайности. Например широко известный пример что 6 девяток подряд встречается с 762 позиции десятичной записи, хотя ровно 5 девяток подряд обнаруживается лишь на 19446 позиции и все другие цифры 6 штук одинаковых подряд встречаются в позициях за 200тысяч. Ещё пример: ровно 10 одинаковых цифр подряд встречаются в позициях начиная от 387млн до 116млрд в зависимости от цифры, это почти три порядка разницы. Ещё совсем поразительный пример: ровно 12 шестёрок подряд встретились в позиции 1.22трлн, а вот ни 13, ни 14, ни 15, ни 16 не встретились до появления аж 17 шестёрок подряд в позиции 28.6трлн! При этом из других цифр максимально встретились лишь 15 семёрок подряд в позиции почти 47трлн, остальные встречались лишь длиной не более 14 одинаковых подряд. Ещё пример: число
встречается лишь в позиции 18.26трлн, хотя и
и
встречаются в первом триллионе цифр. Отдельно забавно что в десятичной записи числа
встречается и сама десятичная запись этого же числа
, такая "рекурсия" в некотором смысле, известно как минимум про 1-14 первых знаков.
А ведь дисперсия каждой цифры при этом вдвое и более ниже допустимой (
), т.е. цифры сами по себе вполне случайны. Однако складываются вон в какие аномалии.
Так что я не вижу ничего такого уж поразительного в существовании хорошего приближения. Причём практически одного, дальше с ростом чисел таких больших рывков точности вроде бы и нету.
Аномальная точность
— обычный статистический артефакт, на какой-то константе должно было случиться, почему не на
.