Вы подумали, что я придираюсь к слову "коэффициент" (ну, если чуть-чуть), а я про то, чтобы вы вспомнили, что это в принципе такое, и каковы необходимые условия экстремума функций многих переменных.
Ну как бы да, строго говоря, при каждом
коэффициент и будет частной производной по этой переменной от функции Лагранжа (так интуитивно должно быть). Тогда в этом плане все сходится и логично!
Сталкиваемся. Ничего особо не делать. Проверять, имеет ли система решения, смотря по правой части. Но в параметрах этого не сделаешь. Поэтому, я думаю, тут надо описать все возможные сценарии, как при решении обычной задачи с параметрами.
Ну то есть в таком случае получается, что при некоторых лямбдах, при которых матрица вырожденна, будет существовать не единственное решение этого уравнения (не единственное
). Тогда нужно взять все это множество
и подставить в наше условие (
). Если какие-то удовлетворят, значит, на них и будет достигаться экстремум. Правильно я понимаю? И это никак аналитически в общем виде не оформить, просто написать, так сказать, словами, как отдельный случай, так ведь?