2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Фокусы парабол
Сообщение26.02.2021, 12:44 
Аватара пользователя
wrest, я сразу ничего не возражал против директрисы, полагая, что Вы чётко понимаете решение. Я встрял потому, что Вы начали излагать доказательство, а в нём видится брешь. Вы используете готовый результат отдельной известной задачи. А именно, задачи о максимальной высоте отскока. Это когда тело находится в свободном падении по параболе, а отскочить оно может не выше, чем директриса параболы. Тут нужно либо признаться, что этот результат берётся готовым, либо нужно доказательство. У Вас доказательства этого нету. Добавлю, чтобы выразить угол наклона линии фокусов понятие директриса знать необязательно.

 
 
 
 Re: Фокусы парабол
Сообщение26.02.2021, 13:08 
drug39 в сообщении #1506673 писал(а):
Я встрял потому, что Вы начали излагать доказательство, а в нём видится брешь. Вы используете готовый результат отдельной известной задачи.
Ну да, просто я как бы нахожусь в потоке dxdy и ТС недавно публиковал другую задачу где я отвечал и делал ссылку на другую задачу а в той ссылка ещё на одну.
drug39 в сообщении #1506673 писал(а):
Добавлю, чтобы выразить угол наклона линии фокусов понятие директриса знать необязательно.
Да, наверное. Просто в этом потоке, о котором я писал выше, меня изначально заинтересовала именно геометрическая вневременная часть, как это можно построить, ну и поскольку парабола, геометрически, определена своим фокусом и директрисой как ГМТ равного расстояния дотуда и досюда, для построения циркулем и линейкой -- директриса естественный репер, а факт наличия общей директрисы у парабол равной энергии -- подарок небес.

Так что вы совершенно правы, я не представляю здесь [строгое] доказательство, а опираюсь на "общее знание".

P.S. Больше всего меня в этих задачах удивляет независимость траектории от конретной силы тяжести. Это, в принципе, понятно (наверное) из того, что в траектории исключено время (оно там только как неявный параметр в уравнениях траектории и от его масшаба и даже равномерности ничего не зависит), и наивно кажется, что если сила тяжести больше, то и падать должно всё "резче", но оказывается нет, все просто быстрей по времени, а геометрия та же. И на Луне траектория (этой задачи) будет ровно та же, что и на Земле.

 
 
 
 Re: Фокусы парабол
Сообщение26.02.2021, 23:21 
Аватара пользователя
Если ничего не напутал, то угол наклона линии фокусов относительно горизонта
$\alpha$ таков, что выполняется
$
\rm tg \, \alpha = 
\dfrac {\rm tg (\pi/2-2\vartheta) } {2 cos^2 (2\vartheta)} - {\rm tg (\pi/2-4\vartheta) }
$ .
При $\vartheta=\pi/4$ линия фокусов вертикальна. При $\vartheta>\pi/4$ линия фокусов находится слева.

 
 
 
 Re: Фокусы парабол
Сообщение27.02.2021, 02:40 
drug39 в сообщении #1506770 писал(а):
$\rm tg \, \alpha = \dfrac {\rm tg (\pi/2-2\vartheta) } {2 cos^2 (2\vartheta)} - {\rm tg (\pi/2-4\vartheta) }$
Это довольно-таки забористый способ написать $\alpha=2\vartheta$
:mrgreen:

 
 
 
 Re: Фокусы парабол
Сообщение27.02.2021, 07:13 
Аватара пользователя
wrest в сообщении #1506780 писал(а):
Это довольно-таки забористый способ написать $\alpha=2\vartheta$
Действительно. Я написал формулу, не применяя директрису, из определения фокуса. Упрощать дальше не пытался. Если воспользоваться свойствами директрисы, то это видно из геометрического построения. Видимо, в этом и есть олимпиадность задачи.

-- Сб фев 27, 2021 09:02:50 --

В связи с этой задачей вспомнилась другая задача по этой теме topic94037.html . Думаю, она не менее олимпиадна.

 
 
 
 Re: Фокусы парабол
Сообщение18.11.2024, 01:07 
wrest в сообщении #1506543 писал(а):
Строим-построим :mrgreen:

Я тут невзначай научился строить циркулем и линейкой места отскоков мяча от наклонной плоскости.
Чтобы не забыть, я использовал свойство:
Цитата:
Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе

Но сперва пришлось научиться строить пересечение касательных. Одна касательная у нас есть, по правилу угол падения равен углу отражения, она стргится в "первом способе" вот тут:
wrest в сообщении #1506543 писал(а):
5. Откладываем угол отражения в точке О, равный углу падения, красная линия -- направление первого отскока (и касательная к первой параболе).

Но по ходу дела выяснилось ещё одно свойство. Оказывается, если хорда проходит через какую-то точку на оси параболы, то геометрическое место точек пересечения касательных проходящих через концы всех таких хорд -- это прямая. Мне не попадалось такое свойство пока я гуглил всё о параболах. Я научился строить эту прямую и находить точку пересечения касательных имея только две точки хорды: место падения мяча и пересесения наклонной плоскости с осью параболы. Попутно, оказалось что точки пересечения касательных все лежат на одной прямой, а перепендикуляры, проведенные из этих точек к горизоннтали, пересекают параболу в точке касания касательной, проведённой из точки А (из которой мяч падает в самом начале задачи).

Таким образом, похоже, что циркулем и линейкой можно построить все фокусы парабол (траектории мяча) и все точки отскока. Ну и вершины парабол, конечно.

Я ещё тогда хотел построить точки отскока циркулем и линейкой... И вот сейчас получилось!

 
 
 [ Сообщений: 21 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group