2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Варианты доказательства
Сообщение09.02.2021, 17:59 


17/06/18
196
Докажем что равенство $x^3 +y^3=z^3$ (1) не может выполняться для натуральных, взаимно простых $x,y,z$.
Пусть $y$-четное, а $x,z$-нечетные числа и $z>y>x$.
Если выполняется (1), то $x+y=z+a$ (2), где $a$-четное натуральное число.
Перепишем (1) и (2): $x^3=  (z-y)((z-y)^2+3zy)$ (1.1); $z-y=x-a$ (2.1);
После возведения (2.1) в степень 3, убедимся, что $a$ кратно 3 и значит кратно 6, и кроме того $x$, или $y$, или $z$ кратно 3.
Если выполняется (1), его левая и правая части это числа одной формы. Ясно, что четное и нечетное числа не могут иметь одинаковую форму, также как числа, одно из которых кратно 3, а другое нет. Нечетные степени сохраняют форму оснований, поэтому числами имеющими одинаковую форму являются $x$ и $z$, а $y$ также как $a$, делится на 6 и имеет форму $6n$.
Поскольку наше решение примитивно и (1.1) пропорционально $(z-y)$, а само $(z-y)$ является кубом, потому что $x$ не делится на 3, нужно признать, что $(z-y)=1^3$, а все прочие нечетные кубы являются непримитивными решениями (1).
Таким образом, (1) при заданных условиях приобретает вид:
$(6n+1)^3 =z^3-(z-1)^3$ (1.2).
Ранее я показывал, почему не может выполняться это равенство.

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение09.02.2021, 18:05 
Заслуженный участник
Аватара пользователя


16/07/14
5183
Москва
dick в сообщении #1504560 писал(а):
его левая и правая части это числа одной формы
Понятие "числа одной формы" не определено.

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение09.02.2021, 22:46 


17/06/18
196
Под числами одной формы я понимаю натуральные числа, которые при делении на заданное меньшее натуральное число дают одинаковый остаток. В частности, для нашего случая, меньшим из четверки чисел (2.1) является $a$, наименьшим значением которого является 6. Поэтому числа $x,y,z$ имеют форму $6n+b$, где $b$ принимает значения от 0 до 5, а $n$ - любое натуральное.

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение09.02.2021, 23:11 
Заслуженный участник
Аватара пользователя


23/07/05
17747
Москва
dick в сообщении #1504560 писал(а):
Поскольку наше решение примитивно и (1.1) пропорционально $(z-y)$, а само $(z-y)$ является кубом, потому что $x$ не делится на 3, нужно признать, что $(z-y)=1^3$
То есть, Вы хотите сказать, что $x$ и $z-y$ взаимно просты? Где доказательство?

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение10.02.2021, 09:54 


17/06/18
196
По-моему, понятие взаимной простоты не распространяется на единицу.

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение10.02.2021, 17:41 


22/03/20
88
dick в сообщении #1504560 писал(а):
Поскольку наше решение примитивно и (1.1) пропорционально $(z-y)$, а само $(z-y)$ является кубом, потому что $x$ не делится на 3, нужно признать, что $(z-y)=1^3$, а все прочие нечетные кубы являются непримитивными решениями (1).

Числа и примитивного решения взаимно простые. Сокращать на $z-y$ некорректно. Не получится нового уравнения Ферма. Так как в результате сокращения получаем известный трином в прежних значениях $z,y$ и новую разность $z_1-y_1=1$. Надо доказать, что числа не могут быть взаимно простыми.

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение11.02.2021, 12:01 


17/06/18
196
Ответьте, пожалуйста, по пунктам:
1."Числа и примитивного решения взаимно простые."
Нужно ли понимать это так, что числа непримитивного решения взаимно просты. Если нет, то как понимать это "и".

2. "Сокращать на $z-y$ некорректно."
Укажите место, где я предлагаю что-либо сокращать.

3."Не получится нового уравнения Ферма."
Укажите место, где я говорю о новом уравнении Ферма.

4. "Так как в результате сокращения получаем известный трином в прежних значениях $z,y$ и новую разность $z_1-y_1=1$."
Поясните, как после деления на 1 Вы намерены получить новые $z,y$.

5. "Надо доказать, что числа не могут быть взаимно простыми".
Какие именно числа не могут быть взаимно простыми?

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение11.02.2021, 12:40 


19/04/14
321
"и" - это очевидно опечатка. Сокращение потому, что у Вас примитивное решение существует только при условии, что степень $z-y=1$. Что не доказано. Не доказано также, что $y$ кратно трем.
А какие числа у Вас еще есть, кроме чисел решения?

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение11.02.2021, 13:26 


22/03/20
88
dick в сообщении #1504560 писал(а):
поэтому числами имеющими одинаковую форму являются $x$ и $z$, а $y$ также как $a$, делится на 6 и имеет форму $6n$.

Почему $z-y$ не принимается просто как число имеющее ту же форму, что и $x$?
Встречные вопросы от Вас не принимаются.

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение11.02.2021, 15:29 


17/06/18
196
Valprim
Так ведь и я говорю, что в (1) обе части - числа одной формы.

"Встречные вопросы от Вас не принимаются".
Это только от меня? Или в целом?
Ничего не скажешь, строго! А если непонятно, что Вы написали? Может, хоть по записи?

Кстати, binki за Вас отвечает, это ничего? Верить можно?

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение11.02.2021, 16:16 


22/03/20
88
dick
Имелось в виду, что одной формы они могут быть и по числу $3$, не только по остаткам, но и быть кратными трем. Нет четкого доказательства, что $y$ кратно трем.
На форуме принято, что автор должен отвечать на вопросы, а не задавать встречные. Но в этом случае мой текст оставлял желание быть получше. Признаю, что был излишне категоричен . Так что без обид.

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение11.02.2021, 18:24 
Аватара пользователя


15/09/13
353
г. Ставрополь
Valprim в сообщении #1504733 писал(а):
На форуме принято, что автор должен отвечать на вопросы, а не задавать встречные.

На форуме принято, что автор обязан отвечать на вопросы заслуженных участников (кроме невежливых). Вопросы незаслуженных участников ТС может по желанию просто игнорировать (особенно, если они недостаточно или ошибочно обоснованы).

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение11.02.2021, 18:30 


17/06/18
196
Valprim
Предположим что $y$ не кратно 3. Могут ли тогда $x$ и $z$ быть одной формы? И могут ли тогда части (1) быть одной формы?
На второй вопрос, ответ: "да", на первый -"нет". Согласны?

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение11.02.2021, 23:44 
Заслуженный участник
Аватара пользователя


01/09/13
3161
Никакие "части" не могут быть "одной формы" - всегда найдётся такое $n$, что заданные числа не сравнимы по модулю $n$.

 Профиль  
                  
 
 Re: Варианты доказательства
Сообщение12.02.2021, 07:44 


22/03/20
88
dick в сообщении #1504743 писал(а):
На второй вопрос, ответ: "да", на первый -"нет". Согласны?

Нет, не согласен. Присоединяюсь к мнению заслуженного участника Geen.
И привожу числовой пример, который хотя и не является решением для кубов, однако годится для сравнения по модулю (это то,что вы называете сравнение по форме) $73-46=33-6;\qquad y=46$. Как видим $y$ не делится на 3.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 26 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group