2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Симметрия для 3-х и 4-х переменных
Сообщение01.02.2021, 18:50 
Аватара пользователя
1. Пусть $f(x,y,z)$-симметрический многочлен с действительными коэффициентами. Известно, что он представим в виде суммы некоторого (заранее неизвестного) количества квадратов рациональных функций с действительными коэффициентами. Докажите, что без ограничения общности, можно считать эти квадраты функций симметрическими.
2. Пусть $f(x,y,z,t)$-симметрический многочлен с действительными коэффициентами. Известно, что он представим в виде суммы квадратов рациональных функций с действительными коэффициентами. Докажите, что без ограничения общности, нельзя считать эти квадраты функций симметрическими.

 
 
 
 Re: Симметрия для 3-х и 4-х переменных
Сообщение01.02.2021, 19:41 
2. Контрпример можно соорудить на основе тождества $(x^2+y^2)(z^2+t^2)=(xz-yt)^2+(xt+yz)^2$.

 
 
 
 Re: Симметрия для 3-х и 4-х переменных
Сообщение04.06.2021, 22:35 
Аватара пользователя
2. Покажем, что $x^2+y^2+z^2+t^2$ нельзя представить в виде суммы симметрических квадратов:
Пусть $\sigma_1,\sigma_2,\sigma_3,\sigma_4$-основные симметрические многочлены, $\Delta_4=(x-y)^2(x-z)^2(x-t)^2(y-z)^2(y-t)^2(z-t)^2$
Поскольку квадрат рациональной функции должен быть симметрическим, то сама функция должна быть либо симметрической либо антисимметрической, поэтому должно быть:
$x^2+y^2+z^2+t^2=\Delta_4\sum{F_i^2(\sigma_1,\sigma_2,\sigma_3,\sigma_4)}+\sum{G_i^2(\sigma_1,\sigma_2,\sigma_3,\sigma_4)},$ $F_i, G_i$ - некоторые рациональные функции,
или
$\sigma_1^2-2\sigma_2=\Delta_4\sum{F_i^2(\sigma_1,\sigma_2,\sigma_3,\sigma_4)}+\sum{G_i^2(\sigma_1,\sigma_2,\sigma_3,\sigma_4)}$
последнее равенство - это тождество и оно должно работать при любых $\sigma_i.$
Пусть $\sigma_1=\sigma_3=0,$ $\sigma_2=\sigma_4=1$ тогда

$-2=144\sum{F_i^2(0,1,0,1)}+\sum{G_i^2(0,1,0,1)},$ что невозможно.
_______________________________

1. Покажем, что $x^2+y^2+z^2$ можно представить в виде суммы симметрических квадратов рациональных функций:

$T_1:\quad x^2+y^2+z^2=\frac{9(x-y)^2(y-z)^2(z-x)^2}{2(x^2+y^2+z^2-xy-yz-zx)^2} +$

$\frac{(x^3+y^3+z^3-x^2(y+z)-y^2(z+x)-z^2(x+y)+3xyz)^2}{(x^2+y^2+z^2-xy-yz-zx)^2}+\frac{(xy(x+y)+yz(y+z)+zx(x+z)-6xyz)^2}{2(x^2+y^2+z^2-xy-yz-zx)^2}$
Вообще этого, в совокупности с тождеством $T_2:\quad x^2+y^2=\frac{(x+y)^2}{2}+\frac{(x-y)^2}{2}$ достаточно для окончательного доказательства утверждения 1. Но я хочу доказать более сильное утверждение, а именно:
_____
Пусть $f(x,y,z)$ - симметрический многочлен с действительными коэффициентами и он представим в виде суммы квадратов многочленов с действительными коэффициентами. Тогда симметрический многочлен $(x^2+y^2+z^2-xy-yz-zx)^2f(x,y,z)$ представим в виде суммы симметрических квадратов многочленов с действительными коэффициентами.
_____
Для доказательства необходимо тождество $T_2$ а также обобщение тождества $T_1:$
$T_3:\quad x^2+y^2+z^2=\frac{([xa^2+yb^2+zc^2] - [xa(b+c)+yb(c+a)+zc(a+b)] + xbc+yca+zab)^2}{(a^2+b^2+c^2 - [ab+bc+ca])^2} + \frac{([x(b^2+c^2)+y(c^2+a^2)+z(a^2+b^2)] - 2(xbc+yca+zab))^2}{2(a^2+b^2+c^2 - [ab+bc+ca])^2} + \frac{(x(b-c)(b+c-2a) +  y(c-a)(c+a-2b)  + z(a-b)(a+b-2c))^2}{2(a^2+b^2+c^2 - [ab+bc+ca])^2}$

По условию: $f(x,y,z)=\sum{g_i^2(x,y,z)},$ тогда

$3f(x,y,z)=f(x,y,z)+f(y,z,x)+f(z,x,y)=\sum{\left(g_i^2(x,y,z)+g_i^2(y,z,x)+g_i^2(z,x,y)\right)}$
$3f(x,y,z)=f(x,z,y)+f(y,x,z)+f(z,y,x)=\sum{\left(g_i^2(x,z,y)+g_i^2(y,x,z)+g_i^2(z,y,x)\right)}$
теперь, применим к каждой из сумм тождество $T_3,$ затем сложим и применим к каждой соответствующей паре квадратов тождество $T_2.$ В итоге получим:

$6\big((x-y)^2+(y-z)^2+(z-x)^2\big)^2f(x,y,z)=\sum{\left(2S_1+2S_2+S_3+S_4+S_5+S_6\right)},$
где
$S_{1,2}=\big([(g_{x,y,z}\pm g_{x,z,y})x^2+(g_{y,z,x}\pm g_{y,x,z})y^2+(g_{z,x,y}\pm g_{z,y,x})z^2] - [(g_{x,y,z}\pm g_{x,z,y})x(y+z)+(g_{y,z,x}\pm g_{y,x,z})y(z+x)+
(g_{z,x,y}\pm g_{z,y,x})z(x+y)] + (g_{x,y,z}\pm g_{x,z,y})yz+(g_{y,z,x}\pm g_{y,x,z})zx+(g_{z,x,y}\pm g_{z,y,x})xy\big)^2$

$S_{3,4}=\big([(g_{x,y,z}\pm g_{x,z,y})(y^2+z^2)+(g_{y,z,x}\pm g_{y,x,z})(z^2+x^2)+(g_{z,x,y}\pm g_{z,y,x})(x^2+y^2)]-2((g_{x,y,z}\pm g_{x,z,y})yz+(g_{y,z,x}\pm g_{y,x,z})zx+(g_{z,x,y}\pm g_{z,y,x})xy)\big)^2$

$S_{5,6}=\big((g_{x,y,z}\pm g_{x,z,y})(y-z)(y+z-2x) + (g_{y,z,x}\pm g_{y,x,z})(z-x)(z+x-2y)+ (g_{z,x,y}\pm g_{z,y,x})(x-y)(x+y-2z)\big)^2$

Каждый многочлен $S$ является симметрическим, что завершает доказательство.
_____
Возьмем для примера:
Rak so dna в сообщении #1504236 писал(а):
$a^6+b^6+c^6+6abc(a+b)(b+c)(c+a)=\frac{1}{3}\sum\limits_{cyc}\left((a^2+bc)(a+b+c) -b^3-c^3\right)^2 + \frac{2}{3}\left(a^2b+b^2c+c^2a+2abc\right)^2 + \frac{2}{3}\left(a^2c+b^2a+c^2b+2abc\right)^2 + \frac{5}{3}a^2b^2c^2$
Имеем:

$a^6+b^6+c^6+6abc(a+b)(b+c)(c+a)=$

$\left((a-b)(b-c)(c-a)\right)^2\left(\frac{3}{2}\left(\frac{a^2+b^2+c^2+ab+bc+ca}{a^2+b^2+c^2-(ab+bc+ca)}\right)^2+\frac{1}{3}\right)$

$+\frac{1}{3}\left(\frac{a^5+b^5+c^5-a^3(b^2+c^2)-b^3(c^2+a^2)-c^3(a^2+b^2)+abc(ab+bc+ca)}{a^2+b^2+c^2-(ab+bc+ca)}\right)^2$

$+\frac{1}{6}\left(\frac{2a^5+2b^5+2c^5-3a^4(b+c)-3b^4(c+a)-3c^4(a+b)+4abc(ab+bc+ca)}{a^2+b^2+c^2-(ab+bc+ca)}\right)^2$

$+\frac{1}{3}\left(a^2(b+c)+b^2(c+a)+c^2(a+b)+4abc\right)^2$

$+\frac{5}{3}a^2b^2c^2$

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group