2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Во поле магнитном.
Сообщение27.08.2020, 11:15 
Заряженная частица с массой, находясь в однородном магнитном поле с горизонтальными силовыми линиями, через некоторое время оказалась на высоте $h$. Найти минимум начальной скорости частицы.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 11:37 
Аватара пользователя
линейный дифур $m\boldsymbol{\ddot r}=[\boldsymbol B,\boldsymbol{\dot r}]+ m\boldsymbol g$ ну то есть линейный дифур с постоянными коэффициентами так что ли?

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 12:04 
если не ошибся:

(Оффтоп)

$\upsilon=\sqrt{2 g h +(qBh/m)^2}$

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 14:29 
Аватара пользователя

(Оффтоп)

У меня получилось такое:
$v_{min} = \frac{h \omega}{2} + \frac{g}{\omega}$
где $\omega = \frac{qB}{m}$

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 14:39 
У меня вышло, как у Ignatovich.

EUgeneUS
У вас при $B=0$ выходит не положенное $\sqrt{2gh}$, а нечто странное.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 15:18 
Аватара пользователя
DimaM в сообщении #1480956 писал(а):
У вас при $B=0$ выходит не положенное $\sqrt{2gh}$, а нечто странное.


Да, я это заметил. Но ошибку у себя найти не смог.
После решения системы дифф.уров получилась циклоида с дрейфом поперек силы тяжести и магнитному полю. Вроде бы, как и должно быть.
Разницу кинетической энергии в верхней и нижней точке проверял, получилось, как положено $mgh$.

В промежуточном результате у меня получилось $\ddot{V_y} + \omega^2 V_y = 0$. При $B=0$ и $\omega=0$, и диффур. получается совсем другой.

-- 27.08.2020, 15:24 --

DimaM
А у Вас как направлена скорость в $t=0$?

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 16:30 
У меня получилось $\sqrt{2gh}$.
Удивился. Хотелось бы, чтобы коллеги проверили.
Я перешёл в СО, двищужуюся с горизонтальной скоростью $\mathbf v_0=m\frac{\mathbf B\times\mathbf g}{qB^2}\sim g/\omega_0$,
в которой сила Лоренца компенсирует $mg$.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 16:51 
dovlato в сообщении #1480966 писал(а):
Я перешёл в СО, двищужуюся со скоростью $\mathbf v_0=m\frac{\mathbf B\times\mathbf g}{qB^2}\sim g/\omega_0$, в которой сила Лоренца компенсирует $mg$.

В движущейся системе отсчета возникнет электрическое поле. Задача проще не станет. Я решал в исходной системе отсчета, расписав уравнение движения для проекций на вертикальную и горизонтальную оси. Далее не потребовалось даже интегрировать.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 17:22 
Аватара пользователя
Ignatovich в сообщении #1480971 писал(а):
Я решал в исходной системе отсчета, расписав уравнение движения для проекций на вертикальную и горизонтальную оси. Далее не потребовалось даже интегрировать.


Я решал также, но интегрировать пришлось.

Ось $Ox$ - вдоль магнитного поля, ось $Oy$ - вверх, ось $Oz$ - поперек первых двух.

$\vec{a} = \frac{qB}{m}[\vec{v},\vec{e_x}] + \vec{g}$
Сразу обозначим $\frac{qB}{m} = \omega$

В проекциях:
$a_y = \omega v_z - g$ (1)
$a_z = - \omega v_y$ (2)
UPD: $a_x = 0$, а так как скорость ищем минимальную, то сразу $v_x = 0$

Продифференцируем (1), после чего подставим в него (2)
$\ddot{v_y} = - \omega^2 v_y$
Откуда $v_y = A \sin (\omega t + \varphi)$, $\varphi$ - просто сдвиг по времени, забудем про него.
$y = - \frac{A}{\omega} \cos(\omega t) + C$
Разница между максимальным и минимальным $y$ равна $\frac{2A}{\omega}$, а это $h$
Откуда $A = \frac{h \omega}{2}$
Минимальный $y$ достигается при $t=0$, $v_y(0) = 0$

из (1) найдем $v_z$
$v_z = \frac{h \omega}{2} \cos (\omega t) + \frac{g}{\omega}$

$v_z(0) = \frac{h \omega}{2} + \frac{g}{\omega}$ и это ответ.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 18:12 
EUgeneUS в сообщении #1480975 писал(а):
Я решал также, но интегрировать пришлось.

Ось $Ox$ - вдоль магнитного поля, ось $Oy$ - вверх, ось $Oz$ - поперек первых двух.

$\vec{a} = \frac{qB}{m}[\vec{v},\vec{e_x}] + \vec{g}$
Сразу обозначим $\frac{qB}{m} = \omega$

В проекциях:
$a_y = \omega v_z - g$ (1)
$a_z = - \omega v_y$ (2)

Интегрируя (для школьников можно и суммировать) уравнение (2), получим
$\upsilon=-\omega h$,

где $\upsilon$ - скорость в верхней точке (начальная скорость вертикальна).
Далее можно записать закон сохранения механической энергии:
$m \upsilon_0^2 /2=m\upsilon^2$/2+mgh

и получить ответ.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 18:30 
EUgeneUS в сообщении #1480975 писал(а):
$\varphi$ - просто сдвиг по времени, забудем про него

Нет, это не просто сдвиг, это сильное (и не верное) предположение о $v_y$
У меня получилось странно. Для слабых полей $\sqrt{2gh}$ (Циклоида с нулевой скоростью в верхней точке ?)
Для сильных полей - более сложное выражение

-- 27.08.2020, 18:36 --

Ignatovich в сообщении #1480991 писал(а):
(начальная скорость вертикальна).

А это очевидно?

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 18:47 
Нет, конечно, начальная скорость не вертикальна.
Опять же, перейдя в свою движущуюся СО, я получил, что в этой СО
начальная скорость частицы по модулю должна быть тоже $v_0=g/\omega_0$.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 18:52 
Аватара пользователя
Ignatovich в сообщении #1480991 писал(а):
Интегрируя (для школьников можно и суммировать) уравнение (2), получим
$\upsilon=-\omega h$,

где $\upsilon$ - скорость в верхней точке (начальная скорость вертикальна).


У меня, конечно, есть скользкие моменты в решении. И оно, видимо, неверно.
Но почему Вы считаете, что чтобы забросить тело на высоту $h$ начальная скорость должна быть вертикальной?
Вообще говоря, существуют траектории, когда
а) скорость в верхней точке равна нулю (то есть вся кинетическая энергия "расходуется" на подъем)
б) ни в какой другой точке траектории скорость не вертикальна.

-- 27.08.2020, 19:18 --

AnatolyBa в сообщении #1480995 писал(а):
EUgeneUS в сообщении #1480975

писал(а):
$\varphi$ - просто сдвиг по времени, забудем про него
Нет, это не просто сдвиг, это сильное (и не верное) предположение о $v_y$


Поясните, пожалуйста.
Мы же всегда можем выбором начального момента времени $t_0$ свести фазу к нулю. Нет?
Конечно, это не означает, что мы "запускаем" частицу в этот момент времени.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 19:47 
EUgeneUS в сообщении #1480998 писал(а):
Но почему Вы считаете, что чтобы забросить тело на высоту $h$ начальная скорость должна быть вертикальной?

Мне казалось это очевидным, но я ошибся. После интегрирования уравнения (2) получим
$\upsilon-\upsilon_0_z=-\omega h$
Из закона сохранения энергии следует
$\upsilon_0^2=2gh+(\upsilon_0_x-\omega h)^2$.
Минимальная начальная скорость $\sqrt{2gh}$, как и писал dovlato.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 19:55 
Аватара пользователя
Ignatovich в сообщении #1481006 писал(а):
Минимальная начальная скорость $\sqrt{2gh}$, как и писал dovlato.


А для любых ли $h$ есть циклоида с нулевой скоростью в вершине? Как и писал уважаемый AnatolyBa

-- 27.08.2020, 20:25 --

В моём решении была ошибка тут:

EUgeneUS в сообщении #1480975 писал(а):
Разница между максимальным и минимальным $y$ равна $\frac{2A}{\omega}$, а это $h$


1. Циклоида c мертвой точкой существует при $h \leqslant \frac{2g}{\omega^2}$
При выполнении этого условия частицу нужно "запускать" по данной циклоиде из некоторой её точки. UPD: не обязательно из самой нижней, как было у меня :roll: Размеры этой циклоиды задаются константами в условиях задачи.
В этом случае вся кинетическая энергия переходит в потенциальную и $v_{min} = \sqrt{2gh}$

2. Для $h \geqslant \frac{2g}{\omega^2}$ эти высоты все равно остаются достижимыми, но запускать частицу нужно горизонтально, и циклоида не будет иметь мертвой точки.
В этом случае верен мой ответ:

EUgeneUS в сообщении #1480975 писал(а):
$v_z(0) = \frac{h \omega}{2} + \frac{g}{\omega}$


3. При $h = \frac{2g}{\omega^2}$ ответы в обоих случаях д.б. одинаковыми. Что и происходит.

AnatolyBa

Скажите, пожалуйста, а что у Вас получилось при больших полях?

 
 
 [ Сообщений: 23 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group