2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 20:57 
Я, задним числом, пришёл к выводу, что по крайней мере для достаточно слабого поля можно обойтись не только без интегралов, но и практически без формул.
1. Задачу можно обратить. Отпустим точку падать.
2.Заметим, что магнитное поле работы не совершает. Откуда следует, что, опустившись на высоту $h$ (а для достаточно слабого поля она опустится на эту высоту) точка достигает минимальной скорости только тогда, когда её отпускали из неподвижного состояния. И эта минимальная скорость равна $v_{\min}=\sqrt{2gh}$.

 
 
 
 Re: Во поле магнитном.
Сообщение27.08.2020, 21:10 
Аватара пользователя
dovlato в сообщении #1481019 писал(а):
1. Задачу можно обратить. Отпустим точку падать.

Я так рассуждал при втором заходе :D
Далее можно заметить, что всё равно получается циклоида. Можно найти её "размах" - от верхней до нижней точки. Это будет граничное значения $h$, выше которого нельзя достичь циклоидой с мертвой точкой.

 
 
 
 Re: Во поле магнитном.
Сообщение28.08.2020, 07:32 
Аватара пользователя
После некоторых завихрений пришёл к ответу EUgeneUS:

$$\[
v_{\min }  = \left\{ {\begin{array}{*{20}c}
   {\sqrt {2gh} } & \text{если} & {h < 2g\left( {\dfrac{m}
{{qB}}} \right)^2 }  \\
   {\left| {\dfrac{{mg}}
{{qB}} + \dfrac{{qBh}}
{{2m}}} \right|} & \text{иначе} & {}  \\

 \end{array} } \right.
\]
$$

 
 
 
 Re: Во поле магнитном.
Сообщение28.08.2020, 07:37 
EUgeneUS в сообщении #1480998 писал(а):
Поясните, пожалуйста.
Мы же всегда можем выбором начального момента времени $t_0$ свести фазу к нулю. Нет?
Конечно, это не означает, что мы "запускаем" частицу в этот момент времени.

Но вы ведь не оговорили, что запускаете частицу не в момент $t=0$. Из дальнейшего хода решения было видно, что как раз предполагается начало движения в $t=0$
Но, думаю, теперь уже все разъяснилось. Для больших полей, бумажку потерял, но, вроде, решение как у вас

-- 28.08.2020, 07:44 --

dovlato
А хорошая получилась задачка, похитрее, чем вы предполагали, не так ли?
Хотя и не сложная, должен сказать, но не без подводных камешков

 
 
 
 Re: Во поле магнитном.
Сообщение28.08.2020, 07:54 
Аватара пользователя
AnatolyBa в сообщении #1481067 писал(а):
Но вы ведь не оговорили, что запускаете частицу не в момент $t=0$. Из дальнейшего хода решения было видно, что как раз предполагается начало движения в $t=0$


В первом решении сделал недоказанное утверждение (и неверное для малых полей), что запускать нужно из нижней точки циклоиды. И оказалось, что движение начинается в $t=0$.
Если бы при решении гармонического диффура выбрал бы не $v_y = A \sin (\omega t)$, а например $v_y = A \cos (\omega t)$, то "запускать" бы пришлось в момент $\omega t = \frac{\pi}{2}$

Кстати, пристально вглядываясь во второй вариант решения, понял, что утверждение
EUgeneUS в сообщении #1481008 писал(а):
2. Для $h \geqslant \frac{2g}{\omega^2}$ эти высоты все равно остаются достижимыми, но запускать частицу нужно горизонтально, и циклоида не будет иметь мертвой точки.
осталось недоказанным :roll:
Как его доказать по-проще, (пока) не придумал.

AnatolyBa в сообщении #1481067 писал(а):
А хорошая получилась задачка, похитрее, чем вы предполагали, не так ли?
Хотя и не сложная, должен сказать, но не без подводных камешков

плюс один.

 
 
 
 Re: Во поле магнитном.
Сообщение28.08.2020, 08:29 
dovlato в сообщении #1481019 писал(а):
Я, задним числом, пришёл к выводу, что по крайней мере для достаточно слабого поля можно обойтись не только без интегралов, но и практически без формул.

Насчет общего случая
Движение здесь - сумма дрейфа и кругового движения по ларморовскому кружку.
Если это знать заранее - задача сводится к школьной геометрии (ну и ЗСЭ не помешает).
Если же не знать, то это можно вывести оставаясь в рамках школьной физики.
Однако дифур как-то проще для тех кто привык
EUgeneUS в сообщении #1481069 писал(а):
осталось недоказанным

Это верно. По моему проше всего доказывать геометрически - как я сказал, рассматривая движение как сумму дрейфа и кругового.
Но можно и утомительно аналитически.

 
 
 
 Re: Во поле магнитном.
Сообщение28.08.2020, 08:43 
Ignatovich в сообщении #1481006 писал(а):
Мне казалось это очевидным, но я ошибся. После интегрирования уравнения (2) получим
$\upsilon-\upsilon_0_z=-\omega h$
Из закона сохранения энергии следует
$\upsilon_0^2=2gh+(\upsilon_0_z-\omega h)^2$.
Минимальная начальная скорость $\sqrt{2gh}$, как и писал dovlato.

Энергетическое решение, как теперь вижу, тоже приводит к правильному ответу. Следует только учесть, что $\upsilon_0_z\leqslant\upsilon_0$.
Тогда приведенное выше решение справедливо при $\upsilon_0=\sqrt{2gh}\geqslant\omega h$, то есть при $h\leqslant2g/\omega^2$.
Если $\upsilon_0\leqslant\omega h$, то начальная скорость минимальна при $\upsilon_0_z=\upsilon_0$. Из уравнения
$\upsilon_0^2=2gh+(\upsilon_0_z-\omega h)^2$

получаем
$\upsilon_0=\frac{g}{\omega}+\frac{\omega h}{2}$ при $h>2g/\omega^2$.

И мне только теперь стал ясен процесс переключения решений. С ростом магнитного поля уменьшается угол, который составляет вектор начальной скорости с горизонтом (минимизирующий величину начальной скорости). При некотором поле этот угол становится равным нулю и остается равным нулю при больших магнитных полях.
Задача "с двойным дном", хороша и для школьников, и для студентов.

 
 
 
 Re: Во поле магнитном.
Сообщение28.08.2020, 14:05 
Да, хорошая задачка получилась. Вполне на олимпиадную тянет.
Можно еще переформулировать, взяв вместо гравитационного поля электрическое.

 
 
 [ Сообщений: 23 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group