А как можно строго обосновать, что покинуть 3-пространство, используя взаимодействия только в нем, невозможно? Если, например, рассмотреть идеализированный случай точечных зарядов, лежащих строго на плоскости, и пренебречь всеми взаимодействиями, кроме электромагнитного, то оно будет оставлять эти точки на плоскости, электрическое поле будет только на их плоскости
, а магнитное поле, которое могло бы выбрасывать их из их тюрьмы по третьему измерению, на плоскости будет отсутствовать, и они смогли бы прорваться в запределье только посредством взаимодействия с зарядами из параллельной плоскости.
И чему соответствовали бы орты осей координат, если бы их было четыре? В 3-случае это кватернионы
, отсюда можно понять векторное произведение
, а можно ли ввести для четырехмерного пространства свои особые мнимые числа такие, что
? Тогда было бы
, и формально такое понятно - если, например, для дрейфа скрещенные электрическое и магнитное поле создают движение заряженной частицы по направлению, перпендикулярному к их плоскости, то нет абсолютно никаких причин, которые заставляли бы реальность выбирать именно направление высоты, а не запределья.
Наверное, проще всего было бы постулировать, что четвертого измерения нет, - но если бы оно все-таки было (свернутое или нет, не имеет принципиального значения), как можно было бы обосновать, что из двух измерений дрейф всегда выбирает именно высоту этого мира? Понятно, что если оставаться в рамках теории Калуцы, где 5-компонента скорости пропорциональна электрическому заряду, выбор запредельного направления означал бы нарушение сохранения электрического заряда, а так как он сохраняется, значит, всегда выбирается высота, но это только доказывает такой выбор, но не объясняет его причин.