Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Эта сумма определена в групповой алгебре и для любого представления задает проекцию на инвариантное подпространство.
Если я Вас правильно понял, приведу пример. Пусть , тогда Матрицы образуют циклическую группу третьего порядка. Их сумма проецирует любой вектор на подпространство, порождённое вектором , но это и есть инвариантное подпространство всех элементов группы.
Эта штука с суммой в теории представлений конечных групп встречается. Эта сумма определена в групповой алгебре и для любого представления задает проекцию на инвариантное подпространство.
Первый человек, которому я задавал эту задачу, мне то же самое сказал. Я теорию представлений не изучал, но видимо, в какой-то момент придется :)