2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Ошибки в Зориче
Сообщение11.02.2020, 20:13 
Заслуженный участник


13/12/05
3990
В учебнике В.А. Зорич Математический анализ, часть 2 (М.:МЦНМО, 2012) на странице 718 (глава XIX, $\S 1$, задачи и упражения) приводится следующее определение:
Пусть $\{\varphi_n(x)\}$ -- асимптотическая последовательность. Если функции $f(x)$, $\psi_0(x),\psi_1(x),\psi_2(x),\ldots $ таковы, что для любого $n=0,1,\ldots$ имеет место равенство
$$
f(x)=\sum\limits_{k=0}^n\psi_k(x)+o(\varphi_n(x))\;,
$$
то пишут
$$f(x)\sim \sum\limits_{n=0}^\infty\psi_n(x),\, \{\varphi_n(x)\}$$
и говорят, что имеется асимптотическое разложение в смысле Эрдейи функции $f$.

Далее приводится задача: покажите, что для заданных $f(x)$, $\{\psi_n(x)\}$ и $\{\varphi_n(x)\}$, разложение
$$f(x)\sim \sum\limits_{n=0}^\infty a_n\psi_n(x),\, \{\varphi_n(x)\}\; ,$$
где $a_n$ -- числовые коэффициенты, либо вообще невозможно, либо единственно.

Утверждение не верно. Контрпример: $f(x)=0$, $\{\psi_n(x)=e^{-(n+1)x}\}_{n=0}^\infty$, $$\{\varphi_n(x)=x^{-n}\}_{n=0}^\infty$ при $x\to+\infty$. В качестве $a_n$ подойдут любые числа.

А все почему? Потому что Зорич дал неверное определение асимстотического разложение по Эрдейи, забыв важное условие, что для любого $n$ существует $\overline{\lim\limits_{x\to \infty}} \left|\frac{\psi_n(x)}{\varphi_n(x)\right|}=c_n$, $0<c_n<+\infty$

 Профиль  
                  
 
 Re: Ошибки в Зориче
Сообщение03.06.2020, 08:20 
Заслуженный участник


13/12/05
3990
Не стал новую тему создавать. Размещу здесь. Вот такую возмутительную халатность увидел в тексте :facepalm: Это картинка из издания 1984 года, но в издании 2012 года тот же текст. Часть II, Глава XIV, $\S$ 1, пункт 2.
Изображение

 Профиль  
                  
 
 Re: Ошибки в Зориче
Сообщение03.06.2020, 08:27 
Заслуженный участник


20/12/10
7476
Произвольная билинейная функция задается матрицей, это медицинский факт. Может, здесь говорится о каком-то подклассе билинейных функций?

-- Ср июн 03, 2020 12:29:19 --

Хотя нет, там слово "каждая". Что за бред?

Upd. Но в специальном базисе действительно достаточно вектора (составленного из коэффициентов при произведениях соответствующих координат).

 Профиль  
                  
 
 Re: Ошибки в Зориче
Сообщение03.06.2020, 08:36 
Заслуженный участник


13/12/05
3990
Он забыл написать антисимметричная билинейная форма. Дальше он правильно пишет, что векторам в силу этой формулы соответствуют 2-формы.

 Профиль  
                  
 
 Re: Ошибки в Зориче
Сообщение03.06.2020, 08:40 
Заслуженный участник


20/12/10
7476
Padawan в сообщении #1466700 писал(а):
антисимметричная
А, вот что. У меня со словом "билинейная" в первую очередь ассоциируется симметричные билинейные функции.

 Профиль  
                  
 
 Re: Ошибки в Зориче
Сообщение18.07.2020, 15:33 
Аватара пользователя


31/08/17
2115
Безобразие конечно, но покажите мне сколько-нибудь толстую книжку без ляпсусов.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group