2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Шарнир Гука
Сообщение04.01.2020, 19:43 
Аватара пользователя
Что это такое написано тут https://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%B4%D0%B0%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BF%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D1%87%D0%B0
Изображение

И так имеются два вала с вилками. Моменты инерции валов относительно их осей равны соответственно $J_1,J_2$. Угол между осями валов остается постоянным и равным $\alpha$. Массу зеленой крестовины считать равной нулю. На систему наложены идеальные связи, которые позволяют ей вращаться относительно инерциальной системы координат наблюдателя так, как показано на рисунке. К валам приложены известные моменты активных сил. Эти моменты направлены вдоль осей валов и равны соответственно $M_1,M_2$.

Написать уравнения движения системы.

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 10:38 
Аватара пользователя
Указание:
Обозначим через $\varphi_1,\varphi_2$ углы поворота валов.
1) Найти уравнение связи $f(\varphi_1,\varphi_2)=0.$
2) написать уравнения Лагранжа со множителями
$$\frac{d}{dt}\frac{\partial T}{\partial\dot\varphi_i}-\frac{\partial T}{\partial\varphi_i}=M_i+\lambda\frac{\partial f}{\partial\varphi_i}$$

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 15:12 
Я в каком-то учебнике по термеху видел эту задачу. Кильчвеский "Курс ТМ" вроде. Или там угол между осями валов не был постоянным... Потому что были обычные уравнения Лагранжа, без множителей.

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 15:16 
Аватара пользователя
Padawan в сообщении #1434558 писал(а):
Потому что были обычные уравнения Лагранжа, без множителей.
IMHO, можно и без множителей - связь то голономная.

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 15:39 
Аватара пользователя
Связь голономная, но это не значит, что можно ввести обобщенную координату глобально (во всяком случае я это делать не умею). В таких случаях тоже используют уравнения Лагранжа со множителями что бы получить глобально определенную систему ОДУ

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 15:42 
pogulyat_vyshel в сообщении #1434560 писал(а):
но это не значит, что можно ввести обобщенную координату глобально

А разве $\varphi_1$ не будет такой координатой? $\varphi_2$ через неё выражается.

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 15:51 
Аватара пользователя
А Вы уравнение связи напишите, и посмотрите, что там получается

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 15:53 
Ну, получится неявная функция. Но она есть. И дифференцировать её -- дело техники.

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 16:10 
Аватара пользователя
Padawan в сообщении #1434566 писал(а):
Ну, получится неявная функция. Но она есть. И дифференцировать её -- дело техники.


Ну вот когда Вы эту технику продемонстрируете, тогда появится, что обсуждать, а пустые разговоры вести мы все умеем.

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 18:57 
Аватара пользователя
У меня получилось следующее уравнение связи:
$$\cos\alpha\sin\varphi_2\cos\varphi_1+\sin\varphi_1\cos\varphi_2=0.$$
Я как-то над этим уравнением не задумывался, и был уверен, что глобально оно не разрешимо. Но если немного подумать, то оказывается, что именно глобально (при всех $\varphi_2\in\mathbb{R}$) оно определяет гладкую функцию $\varphi_1=u(\varphi_2),$ которую даже не так трудно выписать. Там, какая-то тривиальная неединственность есть, но это неважно. Поэтому, действительно, удобнее пользоваться уравнением Лагранжа на обобщенную координату $\varphi_2$ (без множителей.)
А имели ли в виду amon и Padawan именно это -- непонятно. В качестве аргумента предлагалась голономность, но голономность как таковая существования глобальных координат совсем не гарантирует, как и теорема о неявной функции, впрочем.
Вопрос о вычислении обобщенной силы, отвечающей моментам $M_1,M_2$ остался на повестке.

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 19:04 
Аватара пользователя
pogulyat_vyshel в сообщении #1434564 писал(а):
А Вы уравнение связи напишите, и посмотрите, что там получается
$$\tg\varphi_1=\tg\varphi_2\cos\alpha$$

-- 11.01.2020, 19:30 --

pogulyat_vyshel в сообщении #1434591 писал(а):
Вопрос о вычислении обобщенной силы, отвечающей моментам $M_1,M_2$ остался на повестке.

$$\mathcal{L}=\left.\frac{J_1\dot{\varphi_1}}{2}+\frac{J_2\dot{\varphi_2}}{2}+\int M_1(\varphi_1)d\varphi_1+\int M_2(\varphi_2)d\varphi_2\right\lvert_{\varphi_2=\arctg(\frac{\tg\varphi_1}{\cos\alpha})}$$

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 19:44 
Аватара пользователя
Во-перых, раз уж Вы предположили, что моменты зависят от углов (я как-то подразумевал, что они вообще константы), то идите до конца: $M_i=M_i(t,\varphi_1,\varphi_2)$.
Во-вторых, из Вашей подстановки через арктангенс следует, что $\varphi_2\in (-\pi/2,\pi/2)$ что странно. Вы действуете локально, а надо глобально. Ровно то, о чем я и писал.

-- 11.01.2020, 21:05 --

$$\varphi_1=u(\varphi_2)=-\cos\alpha\int_0^{\varphi_2}\frac{ds}{\cos^2s+\cos^2\alpha\sin^2s}$$
:lol:

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 20:21 
Аватара пользователя
pogulyat_vyshel в сообщении #1434598 писал(а):
то идите до конца: $M_i=M_i(t,\varphi_1,\varphi_2)$ и ни какого потенциала там уже не будет.
Зачем ходить туда, где нет ни фига? Со своей стороны не удержусь спросить, как Вы представляете себе карданный шарнир, в котором внешний момент, приложенный к одной половинке, зависит от угла поворота другой? Если ограничится постоянным моментом, то уравнение выглядит как-то так (подозреваю, что дожмете до конца, но пока лень раскрывать всякие производные)
$$\frac{d}{dt}\dot{\varphi}_1\left(J_1+J_2\frac{d\varphi_2}{d\varphi_1}\right)-M_1-M_2\frac{d\varphi_2}{d\varphi_1}=0,$$где$$\frac{d\varphi_2}{d\varphi_1}=\frac{\cos\alpha}{\cos^2\varphi_1\cos^2\alpha+\sin^2\varphi_1}$$

 
 
 
 Re: Шарнир Гука
Сообщение11.01.2020, 20:27 
Аватара пользователя
amon в сообщении #1434602 писал(а):
как Вы представляете себе карданный шарнир, в котором внешний момент, приложенный к одной половинке, зависит от угла поворота другой?

Необязательно внешний. В уравнениях Лагранжа стоят активные силы, они на внешние и внутренние не делятся. Резинку, например, одним концом к одному валу прицепили, другим к другому и тянут еще в сторону с заданной силой.
amon в сообщении #1434602 писал(а):
что дожмете до конца,

дожимать зачем? Вот для меня тут была неожиданность про глобальную разрешимость уравнения, а остальное -- рутина.

 
 
 
 Re: Шарнир Гука
Сообщение12.01.2020, 00:16 
pogulyat_vyshel в сообщении #1434591 писал(а):
оно определяет гладкую функцию $\varphi_1=u(\varphi_2)$

Глядя на рисунок, который Вы привели, достаточно очевидно, что $\varphi_2$ есть гладкая монотонно возрастающая функция от $\varphi_1$.
pogulyat_vyshel в сообщении #1434591 писал(а):
Поэтому, действительно, удобнее пользоваться уравнением Лагранжа на обобщенную координату $\varphi_2$ (без множителей.)
А имели ли в виду amon и Padawan именно это -- непонятно

Да, я это имел ввиду. Но Вы как всегда были чересчур агрессивны.

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group