Получается, что я запутался.
Хотел на скорую руку доказать, что Катющик не
прав, а теперь не пойму, где ошибка в моих
собственных рассуждениях.
Тут проблема не в Вас, а в классической механике, которая не в состоянии корректно определить гравитационное взаимодействие в бесконечном пространстве, примерно равномерно заполненном веществом. Сила, действующая на выбранное тело, вычисляется с помощью некоторого тройного интеграла. В рассматриваемом случае область интегрирования является бесконечной, так как совпадает совсем пространством
. Поэтому интеграл получается несобственным. Способ вычисления может состоять в том, что выбирается некоторая расширяющаяся последовательность областей
, удовлетворяющая условию
. Далее интеграл вычисляется по этим областям, и берётся предел при
. К сожалению, интеграл оказывается расходящимся, и проявляется это в том, что при разном выборе областей
,
, результат получается разным.
Это можно наблюдать уже в простейшем случае, когда все эти области — шары с одним и тем же центром и с неограниченно возрастающим радиусом. Выбирая центр в другой точке, получим другую силу.
Однако говорят, что это не существенно, так как эта сила ненаблюдаема, а наблюдать мы можем только разность ускорений двух тел. Но где-то мне попадалось утверждение, что и эта разность может зависеть от выбора областей
. Сам я это не проверял, так что голову на отсечение давать не буду.
Так как "приталкивание" Катющика — это ньютоновское притяжение "наоборот" (понять бы только, что такое это его "геометрическое экранирование"), то указанная зависимость может привести к неоднозначности "приталкивания".
Между прочим, в ОТО этой проблемы с неоднозначностью нет.