2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Габор Секей парадокс проигрышной игры
Сообщение20.08.2019, 22:47 
Габор Секей.Как играть в проигрышную игру.: Предположим, что в некоторой игре число испытаний (n) всегда четно. Первый игрок А выигрывает очко с вероятностью р = 0,45; для В эта вероятность р = 0,55. Чтобы выиграть игру, игрок должен набрать больше половины всех очков. Если у А есть возможность выбирать число n, то, как ни странно, n = 2 не является лучшим выбором. (Это будет лучшим выбором, когда р очень мало, точнее, когда р меньше 1/3). Если р = 0,45 и n = 2, то вероятность выигрыша для А равна всего лишь 0,452 = 0,2025. Если же испытаний будет больше, то А окажется в лучшей ситуации. Легко доказать, что оптимальным является выбор n = 10. По какой причине А окажется в лучшей ситуации? Поскольку в проигрышной игра, рекомендуется, сделать наименьшее возможное число попыток.

 
 
 
 Posted automatically
Сообщение20.08.2019, 22:51 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- неинформативный заголовок;
- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);
- отсутствует внятная формулировка задачи;
- отсутствуют собственные содержательные попытки решения задачи.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.


-- 20.08.2019, 22:53 --

 !  evs, предупреждение (замечание уже было) за массовое производство тем для Карантина.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group