Уважаемый
svv, благодарю Вас за наглядное объяснение.
Уважаемый
Someone, большое спасибо за ссылку на книгу, в которой задача решена исчерпывающе!
Цитата:
<...>Пользуясь этим, можно найти все тэтраэдры Коксетера в евклидовом пространстве. Их оказывается три.<...>Кроме этих трех калейдоскопов, в евклидовом пространстве имеется еще только четыре калейдоскопа, которые в определенном смысле сводятся к двумерным. Это прямые призмы, в основании которых лежит двумерный калейдоскоп.
Видимо, Шеннон под кубической комнатой имел в виду комнату с квадратным основанием, пол и потолки которой не должны быть зеркальными. А под тетраэдром - не правильный тетраэдр, а те самые тетраэдры Коксетера.
(Оффтоп)
Для поиска двумерных калейдоскопов в книге решается диофантово уравнение. Интересно, что мастер решения диофантовых уравнений Пьер Ферма сформулировал закон геометрической оптики, ныне носящий его имя.