2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Иррациональность
Сообщение17.10.2018, 13:00 
Из-за симметричности ответ может быть и красивым)

 
 
 
 Re: Иррациональность
Сообщение21.10.2018, 20:54 
Аватара пользователя
Rak so dna в сообщении #1346071 писал(а):
Избавиться от иррациональности в знаменателе
$\frac{1}{1+\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{5}}$
$\frac{1}{1+\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{5}}=\frac{f(1,\sqrt[3]{2},\sqrt[3]{3},\sqrt[3]{5})}{1953148004}$, где

$f(x,y,z,u)=g(x,y,z,u)g(x,z,y,u)g(x,u,z,y)g(z,y,x,u)g(u,y,z,x)g(z,u,x,y)\\p(x,y,z,u)p(x,z,y,u)p(x,u,z,y)q(x,y,z,u)q(x,y,u,z)q(x,u,z,y)q(u,y,z,x)$

$g(x,y,z,u)= x^2+y^2+z^2+u^2+2xy-xz-xu-yz-yu-zu$
$p(x,y,z,u)=x^2+y^2+z^2+u^2+2xy-xz-xu-yz-yu+2zu$
$q(x,y,z,u)=x^2+y^2+z^2+u^2+2xy+2xz-xu+2yz-yu-zu$

 
 
 
 Re: Иррациональность
Сообщение21.10.2018, 21:54 
Аватара пользователя
Rak so dna
Я так понимаю, что это ответ. А решение у Вас есть? Было бы интересно проследить за выкладками, если в них была какая-то олимпиадная идея. Ну или просто проверить, нет ли ошибки в рассуждениях.

 
 
 
 Re: Иррациональность
Сообщение21.10.2018, 22:38 
Аватара пользователя
grizzly да, это ответ (странно что с этим возник вопрос). Ключевое утверждение следующее: $P_1(x,y)=(x+y)(x^2+y^2-xy)$, тогда $P_2(x,y,0)=P_1^3(x,y)$, $P_3(x,y,z,0)=P_2^3(x,y,z)$ и т.д. Причем $P_i(x_1,x_2,...x_{i+1})=Q_i(x_1^3,x_2^3,...x_{i+1}^3)$ - полиномы с целыми коэффициентами

 
 
 [ Сообщений: 19 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group