2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 теория вероятности.случайная последовательность.
Сообщение22.07.2018, 17:34 
Орлянка. Пошаговый (+1,-1)-процесс (выигрыш/проигрыш) является бернуллиевским процессом. Процесс, описывающий суммарный выигрыш с начального момента - это случайное блуждание, порожденное этим бернуллиевским процессом. Поэтому можно сказать, что расчеты вероятностей всех событий этого блуждания основываются на процессе с независимыми испытаниями (расчеты по Бернулли).
Поскольку значение СП-блуждания есть сумма одинаково распределенных СВ, то при большом числе шагов в соответствии с ЦПТ его распределение приближается к гауссовскому.
Обосновано ли далее пользоваться гауссовской аппроксимацией или же гауссовское распределение свертывать с (+1,-1)-равновероятным? - Определитесь для какого процесса вы рассчитываете - для нового (старый забыли) или продолжается процесс с тем же начальным моментом. Тут все очевидно - если процесс продолжается, то использование аппроксимации по Гауссу не менее обосновано, чем и ранее.

Итак если я рассчитываю для нового (старый забыли) процесса гауссовское распределение свертывать с (+1,-1)-равновероятным-это как подскажите пожалуйста!

Если процесс продолжается с тем же начальным моментом, то использование аппроксимации по Гауссу -это как подскажите пожалуйста!

 
 
 
 Posted automatically
Сообщение22.07.2018, 17:40 
 i  Тема перемещена из форума «Математика (общие вопросы)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);
- текст следует сделать более читаемым (в частности, воспользовавшись для этого знаками препинания).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group