2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Звёздные величины наземных объектов
Сообщение19.07.2018, 17:41 
Аватара пользователя
Как относительные, так и абсолютные.
Первое - для сравнения с видимой яркостью небесных тел и реального моделирования величин, не встречающихся на небе (например, диапазон от -12 до -26, не считая редчайших моментов затмений Солнца и т.д.), для представления о яркости Солнца на дальних планетах, а также для (в том числе вынужденных$^1$) наблюдений (в том числе в телескоп) наземных источников.
Второе - для большего представления абсолютной величины и расширения её диапазона. Интересно узнать абсолютную величину карманного фонарика, например. :)
Что же касается отсутствия объектов в небе, то наземные объекты - хорошее подспорье для мысленных экспериментов: например, каким видится небо обитателям гипотетической планеты вблизи центра шарового скопления и т.д. В образовательных целях в том числе. Цифры цифрами, а детская впечатлительность - лучший "клей", на который знания "прилепляются" к голове. :)

Итак, для земных объектов, о которых известна прежде всего мощность источника, понадобится узнавать светимость.
Я воспользовался этой работой, где приведено выражение для $m$ от освещённости $E$:
$$m=-14.01-2.51 \lg E$$
$$M=m+5-5 \lg r$$
Освещённость выражается через силу света и расстояние до источника:
$$E=\frac I {r^2}$$
$I$ у нас в канделах, а это уже данные от производителя, т.е. бинго, можно делать примерные подсчёты.

Ручной фонарь со сверхъярким одноваттным светодиодом, купленный в магазине, навскидку даёт 30 кд (эфф., вне луча, но с учётом отражений). На расстоянии около $6.5\cdot10^{-17}$ пк (т.е. 2 м :-) ) имеем $m=-16$, $M=+70$. Абсолютная величина фонарика +70m.

Стадион для прошедшего ЧМ по футболу по требованиям FIFA должен иметь среднюю освещённость 264 кд/кв.м. Это готовая $E$, так что имеем $m=-20$. Абсолютную величину оценивать сложно из-за высокой анизотропии, но если бы это был один изотропный источник на той же высоте над полем стадиона (25-50 м, пусть 50 м для самых крупных стадионов с высокими крышами), то для него $M=+59$.

400-ваттная уличная лампа, мешающая астроному, находящемуся в поле в 3 км от населённого пункта, имеет $m=-3.1$ (Венера, не ярче), $M=+66.9$. В 1 км от фонаря уже $m=-5.5$. Киловаттная лампа (маяк, без отражателей, в 1 км) $m=-6.5$, $M=+65.9$.

Маяки морские имеют осевую силу света от 15 ккд до 2 Мкд, беру сечение луча 4 кв.м (просто не нашёл, для какого сечения указывается сила света), m от -22.9 до фантастических -28.2 (чтобы увидеть при ярком Солнце? исходные данные или расчёт требуют проверки), M гипотетического изотропного источника на расстоянии линии горизонта в открытом море для наблюдателя на высоте мачты корабля (пусть 15 м) - от +43.8 до +38.5 .

Для дальних источников пренебрегаем поглощением в атмосфере.

Сотка над обеденным столом (2 м) выглядит как $m=-17.5$, $M=+68.4$.

Свеча в 10 м: $m=-9$, $M=+73.4$.

Кто узнает, сколько свечей даёт светлячок европейский - сообщите))

Светотехнические расчёты куда сложнее, там и направления, и спектры играют роль, но для первого приближения годно.

Поправки и ваши расчёты для других источников - приветствуются.
Хорошо бы уточнить расчёты для сильно анизотропных источников.

Один из выводов - жить можно и под тусклыми красными карликами, от которых освещения не больше, чем от лампы накаливания - и это освещение понятно в цифрах. Там уже другие вопросы - о климате на такой планете.

$^1$ - см. оффтоп

(Оффтоп)

На одном из Астрофестов была дрянная погода, и все, кто никак не желал с этим мириться, взялись наблюдать кем-то сконструированный из микродиода и водружённый на некую вышку на территории светильник. Это позволило удовлетворить некоторые естественные астрономические потребности, однако потом тот светильник кто-то свистнул.

 
 
 
 Posted automatically
Сообщение19.07.2018, 17:53 
 i  Тема перемещена из форума «Астрономия» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);
- хотелось бы увидеть пояснение, что именно тут предлагается обсуждать и зачем.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение19.07.2018, 20:09 
 i  Тема перемещена из форума «Карантин» в форум «Астрономия»


-- 19.07.2018, 20:12 --

Alex_J в сообщении #1327673 писал(а):
Я воспользовался этой работой
, где приведено выражение для $m$ от освещённости $E$:
$$m=-14.01-2.51 \lg E$$
М-да, как бы это развидеть... Коэффициент перед логарифмом должен быть равен $2.5$ точно. Конечно, численно ошибка невелика, но в этой области это классическая детская ошибка, означающая, что работу можно выкидывать в корзину.

 
 
 
 Re: Звёздные величины наземных объектов
Сообщение20.07.2018, 12:20 
Alex_J в сообщении #1327673 писал(а):
Я воспользовался этой работой
, где приведено выражение для $m$ от освещённости $E$:
$$m=-14.01-2.51 \lg E$$

Логарифм от размерной величины. Мда...

 
 
 
 Re: Звёздные величины наземных объектов
Сообщение20.07.2018, 15:33 
DimaM в сообщении #1327819 писал(а):
Логарифм от размерной величины. Мда...
Ну это-то ладно, если единицы измерения освещенности явно оговариваются. Однако в упомянутой работе этого нет. :-(

 
 
 
 Re: Звёздные величины наземных объектов
Сообщение20.07.2018, 20:23 
Аватара пользователя
Размерность в парсеках в известной формуле $M=m+5-5\lg r$ вас, видимо, не смущает. :-)

(Оффтоп)

В работе предлагается готовая формула для вычислений (подставил - получил), а не теоретический и во всех отношениях правильно оформленный вывод её. Можно предположить, что в слагаемом $-14.01$ тот "логарифм размерности" также имеется. Я их не защищаю. Цифра $2.51$ действительно загадочна.
В работе, кстати, пляшут от освещённости, а я пойду ниже от светимости.

Ладно, будем исправлять ситуацию. Всё пересчитано, и картина такая.

Из связи $M_{0}-M=2.5\lg\frac{L}{L_{0}}$, где с индексом $0$ - величины для Солнца ($+4.7$ и $3.86\cdot10^{26}$Вт соответственно), получаем с округлением
$$M=71.17-2.5\lg L$$
$L$ в Вт - полная светимость источника (таковая взята $L_0$. Но далее я беру так же, как и раньше, эффективные ватты свечения, или люмены). Видимая величина для наземных источников, с переводом расстояния в метры:
$m=M-5+5\lg(r[\text{м}]\cdot3.241\cdot10^{-17}[\text{пк/м}])=M-87.45+5\lg r[\text{м}]$

Проверяю для объектов из первого поста:
Фонарик выходит с $M=+67.5$ вместо $+70$, $m=-18.5$ вместо $-16$
Стадион (с учётом рассуждений): $M=+55.4$, $m=-23.5$
Уличный фонарь 400 Вт в 3 км: $+64.7$, $+5.4$ (более похоже на правду)
Лампа над столом: $+66.2$, $-19.8$
Свеча в 10 м: $+71.2$, $-11.3$ (полная Луна до $m=-12.7$)
Маяк с учётом рассуждений: от $+60.7$ до $+55.4$, для оценки видимой нужно знать угол расхождения луча.
Представим, что мы смотрим в иллюминатор из самолёта ночью зимой на небольшой посёлок, в котором 100 фонарей уличного освещения по $400$ Вт каждый. Поскольку смотрим не отвесно вниз, скорее под $45\textdegree$ к вертикали, то расстояние пусть 14 км, без потерь в атмосфере (ясная морозная ночь). Принимаем альбедо чистого снега $0.9$ и геометрические потери $0.5$. Имеем $m=-3.9$, но не в виде точки, а больше похоже на туманность и скопление, кто видел, тот знает. :-)

Для сравнения, телескоп Хаббл может видеть до $+31.5m$, значит, он увидит, на расстояниях:
Фонарик: $3.1$ млн. км
Стадион (опять же см. про изотропность): $5.34$ а.е. (сравнимо с орбитой Юпитера)
Уличный фонарь: $11.4$ млн. км
Стоваттная лампа: $5.7$ млн. км
Свеча: $570$ тыс. км, т.е. на ночной стороне Луны - Хаббл свечу увидит.
Посёлок: $0.51$ а.е.

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group