Можете объяснить как решать задачи этого типа. У меня в голове эта тема как-то очень плохо усвоилась.
Пример задачи:
Цитата:
2.4.28

. Два тела массы

и

соединены недеформированной пружиной
жесткости

. К телу массы

приложили постоянную силу

. Из-за небольшого
внутреннего трения в пружине возникшие колебания затухли. На сколько
возросла внутренняя энергия системы? Какова конечная энергия пружины? Если
к моменту затухания колебаний тело массы

прошло в направлении силы F
расстояние l, то какова в этот момент кинетическая энергия системы?
Я смог найти только энергию пружины.


Получается:

Ответ сошёлся с тем, что в задачнике, но не исключена возможность чётного числа ошибок
Не как не могу понять, как получить ответы на остальные вопросы. Можете, пожалуйста, дать подсказки и какой-нибудь общий алгоритм решения таких задач. Можно с применением матана. Но без использования уравнения колебаний. Заранее спасибо