2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: "Множества", в действительности не являющиеся множествами
Сообщение05.07.2018, 03:10 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
Anton_Peplov в сообщении #1324459 писал(а):
Причём это, как правило, даже не указывается в соответствующем учебнике по алгебре или анализу. Можно сказать, что аксиома выбора общепринята среди всех математиков, которые не занимаются конкретно теорией множеств и прочими основаниями.
Так и есть. Пока я не начал достаточно серьёзно интересоваться аксиоматической теорией множеств, я даже не понимал, когда использую в своих рассуждениях аксиому выбора, и мне пришлось учиться распознавать её неявное использование. Она позволяет формализовать совершенно естественные рассуждения, которые часто используются в математическом анализе и не только там. Предложения заменить аксиому выбора аксиомой детерминированности, которые когда-то встречались, выглядят дикостью, даже несмотря на то, что в том математическом анализе, который студенты изучают на первом курсе, ничего не изменится. Аксиома детерминированности, конечно, очень интересна (в основном специалистам в дескриптивной теории множеств), но весьма контринтуитивна, а её непосредственное применение, в отличие от аксиомы выбора, выглядит совершенной головоломкой. И уж совершенно точно такая замена не прибавит конструктивности.

Не надо взваливать всю неконструктивность на аксиому выбора.
Во-первых, неконструктивность аксиомы выбора точно такая же, как у определения непустого множества. Когда мы говорим "множество $A$ непустое; возьмём любой элемент $x\in A$", мы допускаем точно такую же неконструктивность, как при использовании аксиомы выбора.
Во-вторых, аксиома выбора (возможно, с некоторыми ограничениями, я тут не специалист) верна и в конструктивной математике: если у нас конструктивно задано некоторое семейство множеств, и у нас есть конструктивное доказательство того, что все эти множества непустые, то тем самым мы можем конструктивно указать элемент в каждом из множеств семейства.

Anton_Peplov в сообщении #1324459 писал(а):
На самом деле от аксиомы выбора зависит даже определение бесконечного множества как множества, равномощного своему собственному подмножеству. Хотел написать "...которое используется повсеместно", но понял, что это лишь моё ощущение, которое я не готов подкрепить списком примеров.
Определение бесконечного множества по Дедекинду, которое Вы привели, возможно, где-то и используется, но в современной литературе вряд ли. Основным является определение "множество бесконечно, если оно не равномощно никакому начальному отрезку натурального ряда" (или никакому натуральному числу, если натуральные числа определять стандартным в теории множеств способом). Как раз из-за того, что эти определения без аксиомы выбора могут оказаться не равносильными, а нам хочется, чтобы мощность конечного множества выражалась натуральным числом.

Вообще, всякие споры о допустимости использования аксиомы выбора запоздали уже на много десятилетий.

 Профиль  
                  
 
 Re: "Множества", в действительности не являющиеся множествами
Сообщение05.07.2018, 08:12 
Заслуженный участник


11/05/08
32166
mihaild в сообщении #1324455 писал(а):
Ну например существование базиса у любого векторного пространства

А его и не существует. Т.е. существует, конечно, только вот найти его заведомо невозможно. Тут как с крокодилами, которые летают, да.

 Профиль  
                  
 
 Re: "Множества", в действительности не являющиеся множествами
Сообщение05.07.2018, 15:40 
Заслуженный участник
Аватара пользователя


16/07/14
9149
Цюрих
ewert в сообщении #1324511 писал(а):
А его и не существует
А это уже спор об определении слова "существование".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 33 ]  На страницу Пред.  1, 2, 3

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: StudentV


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group