2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Бесконечности меньше счётной?
Сообщение07.06.2018, 19:18 
Аватара пользователя
Здравствуйте!

Возник наивный дилетантский вопрос. Рассматривая выражение $\log_2\aleph_0$, где $\aleph_0$ — мощность множества натуральных чисел, т.е. наименьшая из известных в математике бесконечность, я обнаружил, что $$N<\log_2\aleph_0<\aleph_0,$$ где $N$ — сколь угодно большое, но конечное, натуральное число.

В самом деле, логарифм — функция неограниченно возрастающая, значит на бесконечности обращается в бесконечность. Поэтому я сначала предположил, что $\log_2\aleph_0=\aleph_0$. Но тогда $2^{\aleph_0}=\aleph_0$, что неверно, т.к. $2^{\aleph_0}=\aleph_1>\aleph_0$. Значит, значение этого логарифма должно быть меньше $\aleph_0$. Тогда предположим, что $\log_2\aleph_0=N$. Но тогда $2^N=\aleph_0$, что опять же неверно, поскольку и основание, и показатель этой степени конечны. Значит, искомое значение должно быть больше $N$.

Таким образом, возникает необходимость введения бесконечностей, меньших счётной: $$\aleph_{-1}=\log_2\aleph_0,$$ $$\aleph_{-2}=\log_2\aleph_{-1},$$
и т.д.

Тогда противоречий, похоже, не возникает, но каков смысл этих «бесконечностей меньше счётной»? Скажите кто-нибудь, я вообще правильно рассуждаю или это бред сивой кобылы? Повторяю, я дилетант. Спасибо.

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 19:26 
Аватара пользователя
Timofeyev в сообщении #1317979 писал(а):
Рассматривая выражение $\log_2\aleph_0$,
А что такое логарифм от мощности? Почему Вы решили, что он обязательно существует?
Timofeyev в сообщении #1317979 писал(а):
Таким образом, возникает необходимость введения бесконечностей, меньших счётной
Не возникает. Есть теорема, что счётная мощность - минимальная среди бесконечных.
Приведённые Вами рассуждения просто говорят о том, что разумно определить $\log_2\aleph_0$ невозможно, не существует такого объекта.

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 19:42 
Аватара пользователя
Mikhail_K в сообщении #1317983 писал(а):
А что такое логарифм от мощности?
Рискну предположить, что здесь это мощность множества всех натуральных степеней двойки :D

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 19:52 

(Оффтоп)

Timofeyev в сообщении #1317979 писал(а):
Рассматривая выражение $\log_2\aleph_0$
Чем таким, стесняюсь спросить, привлёк вас Алеф-нуль? Почему вы не хотите взять логарифм от литровой стеклянной банки? Пробегающей мимо собаки? Ветерка, охлаждающего ваш разгорячённый разум? Потому что это бессмысленно, ибо такой логарифм не определён? Ну дык он и от Алеф-нуль неопределён же ж!

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 20:04 

(Оффтоп)

Лучше брать логарифмы от нестандартных вещественных чисел или там от сюрреальных. Наверняка тогда будут существовать (ну, в первом случае при положительности числа — разумеется, должен, — а вот во втором не знаю).

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 20:09 
Аватара пользователя
Timofeyev, с какого перепугу вы вообще решили, что имеете право оперировать с кардиналами как с обычными числами из $\mathbb R$? Может, для вас и синус взять от $\aleph_0$ — не проблема?

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 20:10 
Аватара пользователя
А у ТС идея то плодотворная:

$$\lim_{x \to \infty}\sin x = \sin \aleph_0$$
$$\ln(\aleph_0) = \ln(1+\aleph_0) = \aleph_0 - \dfrac{\aleph_0^2}{2}+\dfrac{\aleph_0^3}{3}-...$$

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 20:13 
Аватара пользователя
Нет, ну ладно, ТС не понимает, что такое логарифм кардинального числа. Но зачем же говорить, что такого не существует? Это же вполне стандартная операция -- логарифм большего кардинального числа по основанию меньшего (или равного).

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 22:13 
Аватара пользователя
Mikhail_K в сообщении #1317983 писал(а):
А что такое логарифм от мощности? Почему Вы решили, что он обязательно существует?

Да, похоже, что это действительно ерунда. Значит, вопрос закрыт. Спасибо.

 
 
 
 Re: Бесконечности меньше счётной?
Сообщение07.06.2018, 22:14 
Аватара пользователя
Смех смехом, но какой-то смысл заголовку можно придать:
post66504.html#p66504

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group