Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
В вершинах семнадцатиугольника записали различные целые числа (по одному в каждой вершине). Затем все числа одновременно заменили на новые: каждое заменили на разность двух следующих за ним по часовой стрелке чисел (из соседнего вычитали следующее за ним). Могло ли произведение полученных чисел оказаться нечётным?
Нашел такой ответ: Нет.
Пусть по кругу стояли числа a1, a2, ..., a17, тогда новые числа будут равны a2 - a3, a3 - a4, ..., a17 - a1, a1 - a2, и их сумма равна 0. Если сумма 17 чисел чётная, то среди них есть хотя бы одно чётное число (сумма нечетного числа нечётных чисел нечётна). Тогда произведение этих чисел чётно.
И вот я вообще не понимаю пункт про то, что сумма их равна нулю. Почему так? Почему сумма разностей последующих друг за другом чисел в N-угольнике, где N- нечетное, равна нулю?