2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Простое ОДУ с обобщенной функцией ?
Сообщение05.02.2018, 05:33 
Заслуженный участник
Аватара пользователя


31/01/14
11292
Hogtown
Sicker в сообщении #1290175 писал(а):
Я думаю чтобы нас рассудить надо позвать в тему Munin и amon, тогда счет будет 3:2

При всем уважении, и Munin, и amon--физики, и звать их рассудить чисто математический вопрос--нелепо. И, я почему-то думаю что вы сильно ошибаетесь по поводу счета
Sicker в сообщении #1290175 писал(а):
Кстати, в моем решении функция $f$ просто постоянна, а не немонотонна

Функция $f$ задана, а не является решением.

(Оффтоп)

Нет, похоже что перерыв в активности на форуме вам явно на пользу не пошел.

 Профиль  
                  
 
 Re: Простое ОДУ с обобщенной функцией ?
Сообщение05.02.2018, 05:42 
Аватара пользователя


13/08/13

4323
Red_Herring в сообщении #1290177 писал(а):
При всем уважении, и Munin, и amon--физики

Вот собственно поэтому я их и позвал :D
Red_Herring в сообщении #1290177 писал(а):
и звать их рассудить чисто математический вопрос--нелепо.

Никто вам не давал монополию на понимание дельта-функции :roll:
Red_Herring в сообщении #1290177 писал(а):
Функция $f$ задана, а не является решением.

Я имею ввиду, что функция должна иметь такой вид чтобы было решение.

 Профиль  
                  
 
 Re: Простое ОДУ с обобщенной функцией ?
Сообщение05.02.2018, 07:22 


20/03/14
12041
 !  Sicker
Достаточно. Предупреждение за захват темы. Эта часть будет отделена.


Определения учите. Хотите вводить другие - обосновывайте, почему они равносильны старым. В учебном разделе диктовать ответы отвечающим нелепо.

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 15:17 
Модератор


19/10/15
1196
 !  Sicker, тему открыл, если хотите ее обсуждать - приведите определения $\delta$-функции и решения ДУ с обобщенными функциями, которыми Вы пользуетесь.

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 15:49 
Аватара пользователя


13/08/13

4323
Я пользуюсь стандартным определением дельта-функции, не в этом суть. Я не согласен с этим выражением $f(\theta(x))\delta(x)$ как осмысленным (где $\theta(x)$ - функция Хэвисайда, а $f(0)=f(1)$). Потому что если взять ее производную, то вылезает дельта в квадрате, что является глубокой патологией с точки зрения чистых математиков. И у этого выражения поэтому не будут свойства дельта-функции как линейного функционала.

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 16:51 
Аватара пользователя


31/08/17
2116
Sicker в сообщении #1291411 писал(а):
Я не согласен с этим выражением $f(\theta(x))\delta(x)$ как осмысленным (где $\theta(x)$ - функция Хэвисайда, а $f(0)=f(1)$).

Вы не считаете осмысленным умножение дельта-функции на константу? :lol1:

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 16:56 
Заслуженный участник
Аватара пользователя


31/01/14
11292
Hogtown
Sicker в сообщении #1291411 писал(а):
то вылезает дельта в квадрате, что является глубокой патологией с точки зрения чистых математиков

Скажите это Ж. Ф. Коломбо, Ю.В.Егорову и В.К.Иванову. Впрочем, я с Вами полностью и искренне согласен, и хочу иметь дело со Шварцевскими обобщенными функциями, а не с патологиями и прочими извращениями (в которым мосье Коломбо толк понимает) :D

Но поскольку $f(x(t))$ непрерывна при $t=T$, при ее дифференцировании никакой $\delta$ функции не возникает, и соответсвенно никакого квадрата ее не будет. А для этой непрерывности необходимо и достаточно, чтобы $f(c_-)=f(c_+)$, что и было потребовано.

В частности, в Вашем примере $f(\theta(x))$ будет константой при условии $f(0)=f(1)$, а уж на константу умножать дельту никому не заказано, даже таким пуристам как мы :D

Ну и дифференцируете Вы как то странно. Скажем, мы дифференцируем произведение $\theta (x)\theta(-x)$, которая равна $0$ тождественно (если мы определяем $\theta (x)=0$ при $x\le 0$, $\theta (x)=1$ при $x> 0$). Согласно Лейбницу должно получиться $\delta(x)\theta(-x) -\theta(x)\delta(x)$ и поскольку ни один из членов смысла не имеет (для нас, пуристов), а является патологией, то согласно Вашей логике $\theta (x)\theta(-x)$ тоже смысла не имеет.

-- 09.02.2018, 09:02 --

Sicker в сообщении #1290178 писал(а):
Вот собственно поэтому я их и позвал

А они на зов не откликнулись...

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 17:31 
Заслуженный участник
Аватара пользователя


04/09/14
5233
ФТИ им. Иоффе СПб
Red_Herring в сообщении #1291432 писал(а):
А они на зов не откликнулись...
Что там насчет лиха-то было...
А вот тоже блесну необразованностью и вопрос задам. Пусть $f(x)=e^x.$ Тогда, согласно вышеизложенному, уравнение, вроде как, решения не имеет. А что, если я по крестьянской простоте напишу $x(t)=\theta(t)$ с условием $\theta(0)=0.$
Проверяем себя:
$$
\begin{align}
x'=\theta'(t)&=\delta(t)\\
\int x'(t)\varphi(t)dt&=\varphi(0)\\
\int e^x\delta(t)\varphi(t)dt&=e^0\varphi(0)=\varphi(0)
\end{align}
$$Т.е. формально всё выполнено. Есть нюанс, связанный с тем, что в правой части стоит произведение, запрещенное религией. Но если я поклянусь мамой и здоровьем покойных родителей, что я ничего дифференцировать больше не буду, а интегрировать буду только с хорошенькими финитными бесконечно дифференцируемыми функциями, то что мешает провозгласить это решением?

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 18:01 
Аватара пользователя


31/08/17
2116
у вас функция $e^{\theta(t)}$ разрывна в нуле, а дельта-функция не определена на разрывных функциях. Нет канонического способа продолжить линейный функционал $\delta$ с пространства скажем $C[-1,1]$ до непрерывного функционала на пространство кусочно непрерывных функций на $[-1,1]$ с нормой равномерной сходимости. Т. е. такое продолжение не единственно

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 19:06 
Заслуженный участник
Аватара пользователя


31/01/14
11292
Hogtown
pogulyat_vyshel в сообщении #1291445 писал(а):
Нет канонического способа

Разумеется можно взять какой-нибудь способ (их всего однопараметрическое семейство, при условии локальности) и объявить его каноническим. Тогда это уравнение будет пониматься в рамках расширенного определения и количество решений увеличится. А оно нам надо?

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 19:33 
Аватара пользователя


31/08/17
2116
Red_Herring в сообщении #1291458 писал(а):
азумеется можно взять какой-нибудь способ (их всего однопараметрическое семейство) и объявить его каноническим.

не, ну можно и на $L^\infty$ продолжить по теореме Хана-Банаха :)

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 20:18 
Заслуженный участник


14/10/14
1220
amon в сообщении #1291439 писал(а):
что мешает провозгласить это решением?
Да ничего не мешает. Просто по идее надо сначала сказать, в каком пространстве ищем решение, в каком смысле понимается производная, что такое $\delta$, откуда можно брать $f$ и что такое композиция $f$ с $x$. А тут происходит игра, которая называется "дополни набор символов до корректного условия задачи максимально разумным способом". А способов больше одного, и можно думать, какой разумнее. А можно играть в другую игру: "придумай ещё один набор символов, назови его решением, а потом думай, что это такое и для какой задачи это решение".

pogulyat_vyshel в сообщении #1291463 писал(а):
можно и на $L^\infty$ продолжить по теореме Хана-Банаха :)
Неконструктивно... А на кусочно непрерывных можно определить $\delta(g)=g(0)$ (вариант, который использует amon), или $\delta(g)=g(-0)$, или $\delta(g)=\frac12 (g(-0)+g(+0))$, или ещё что-нибудь.

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение09.02.2018, 21:26 
Заслуженный участник
Аватара пользователя


04/09/14
5233
ФТИ им. Иоффе СПб
Red_Herring в сообщении #1291458 писал(а):
А оно нам надо?
Вам не знаю, а нам частенько надо. Периодически приходится считать что-то вроде
$$
\lim\limits_{a\to0,b\to0}\int dx\frac{a-b}{(x-a+i0)(x-b-i0)}
$$(Для знатоков - это поляризационная петля, упрощенная до безобразия.) При этом результат зависит от порядка взятия пределов, и в этом месте нужны сложные упражнения с бубном, что бы получить хороший результат. Результат этот будет наблюдаемой величиной, и можно свериться с ответом у самого господа бога. У меня в этом месте всю жизнь возникает ощущение, что я не знаю чего-то, что без этого бубна позволяет обойтись.

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение10.02.2018, 00:15 
Заслуженный участник
Аватара пользователя


31/01/14
11292
Hogtown
amon в сообщении #1291489 писал(а):
Периодически приходится считать что-то вроде

Для начала, что такое
$$(a-b)(x-a+i0)^{-1}(x-b-i0)^{-1}$$
Канонического определения нет. Но разумная интерпретация:
$$(x-b-i0)^{-1}-(x-a+i0)^{-1},$$
где оба слагаемых определены.

Действительно, если есть аналитическая функция $f(z)$ в верхней (нижней) комплексной полуплоскости, которая при приближении к вещественной оси растет не быстрее, чем $C|\operatorname{Im} z|^{-M}$, то определена обобщенная ф-я $f(x\pm i0)$. В частности, определены
$$(x\pm i0)^{-1}=x^{-1}\mp \pi i\delta (x),$$
где действие $x^{-1}$ понимается в смысле главного значения интеграла $\int x^{-1}\varphi(x)\,dx$, и потому $x^{-1}= (\ln |x|)'$. Посему при $(a-b)\to 0$ мы имеем $(x-a)^{-1}-(x-b)^{-1}$ стремится к $0$ (в смысле теории обобщенных функций, разумеется. Более того, $(a-b)^{-1}[(x-a)^{-1}-(x-b)^{-1}]$ имеет предел, равный $-[(x-a)^{-1}]' = -[\ln |x-a|]''$.

А вот $\pi i [ \delta (x-a)+\delta (x-b)]$ очевидно стремится к $2\pi i \delta(x-a)$. И все без шаманизма и прочих извращений (в которых понимает толк месье Коломбо) и глубоких патологий.

 Профиль  
                  
 
 Re: ДУ с обобщенной функцией.
Сообщение10.02.2018, 01:21 
Заслуженный участник
Аватара пользователя


31/01/14
11292
Hogtown
Замечание

1) Когда мы берем предел $f(x\pm i0)$, мы получаем обобщенную функцию, которая распространяется на $C_0^{s}$ при любом $s>M$. М.б. даже можно улучшить это в общем случае.

2) На самом деле, полной аналитичности не надо, достаточно чтобы $|\frac{\partial f}{\partial\bar{z}}|\le C'|\operatorname{Im} z|^N$ с $N=N(M)$. Можно это $N(M)$ указать, но неинтересно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 86 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group