Это всё ложные выводы, идущие от нежелания честно проделать операции со всей бесконечностью включительно.
Гм. Не думал, что доживу до того, что прозрачные аргументы за неопределённость величины будут называть ложными.
Давайте начнём с того, что никто не в силах сосчитать бесконечную сумму в лоб, так же как конечную, просто потому что мы никогда не остановимся в сложении (за один раз мы можем сложить только два слагаемых, ну или если настроение хорошее, то любое конечное число; этого всё равно будет мало). Так что мы не можем иметь никакой результат. Вместо этого мы определяем значение суммы бесконечного семейства слагаемых по аналогии с тем, какие свойства есть у конечных сумм.
Если на семействе слагаемых
(где
— какое-то наше числовое множество, а
— индексы семейства) нет никакой структуры, то нас ожидает провал, как только число ненулевых слагаемых будет бесконечным. Если они все будут одного знака (и они сами из упорядоченного множества вроде
), мы по крайней мере с достаточной пользой можем присвоить сумме значение
какого-то знака, но если значений каждого знака бесконечно много, то остаётся руки развести. Это всё потому что у нас без дополнительной структуры мало свойств: мы можем хотеть лишь чтобы сумма конечного семейства (
конечное) была равна обычной конечной сумме
, чтобы семейство из одних только нулей имело нулевую сумму и чтобы
имело суммой
(
— дизъюнктное объединение).
Если на индексах есть какой-то порядок, например
или
, а на числовом множестве
есть топология, мы можем воспользоваться пределами для определения сумм. Плюс здесь в том, что все суммы, определённые без учёта порядка слагаемых, как выше, при этом определении остаются определёнными и имеют те же значения. Кроме того значения появляются и у сумм других семейств, типа ряда
. Для
нам придётся похитрить, раскусив ряд на два обычных
-индексированных ряда, обосновав это тем, что вольность в месте разрезания ничего не меняет, просто отнимая конечное значение от одной суммы и прибавляя к другой (если та или та существуют — и они обе должны существовать, чтобы существовала общая сумма). Не знаю, можно ли из каких-то более общих соображений её определить.
Мы же знаем, что иксов и игреков одинаково бесконечно много. Построенная бесконечная последовательность симметрична.
Но как симметричность должна что-то делать определённым? Мало смысла определить лишь избранные ряды/произведения сходящимися просто потому что без этого душе больно. Польза в сумме ряда в том, как связаны суммы связанных друг с другом рядов. Например вот берём ряд
и ряд
, вычитаем из второго первый:
— и получаем ряд
, сумма которого уж точно должна быть равна 2. Если суммы первых двух были равны 0 (попробуйте убедить кого-то, что они должны быть разными; по крайней мере если у одного сумма и 0, то у другого-то точно не ±2!)
Весь ответ содержателен
Я не говорил, что он бессодержателен, я говорил, что тест пройден удачно уже потому.