Согласно постановке задачи, Вам нужно рассматривать систему со входом (или входами). Вход - это сигнал определённого светофора, или несколько входов - это несколько сигналов разных светофоров, разнесённых в пространстве. Модель будет примерно такой:
![$y[t]=\sum\limits_{k=1}^{n}a_k\cdot y[t-k]+\sum\limits_{k=0}^{m}b_k\cdot s[t-k]+e[t]$ $y[t]=\sum\limits_{k=1}^{n}a_k\cdot y[t-k]+\sum\limits_{k=0}^{m}b_k\cdot s[t-k]+e[t]$](https://dxdy-02.korotkov.co.uk/f/5/5/b/55bdc122e06a581602ecf636482dad6d82.png)
,
где
![$s[t]$ $s[t]$](https://dxdy-02.korotkov.co.uk/f/d/1/0/d108ae493aa3a577fb831ab3dede936882.png)
- сигнал светофора.
Если все временные интервалы, как писал
Mihaylo, одинаковые, то у Вас получается дискретная система с равномерной дискретизацией. Мат. аппарат для их исследования разработан очень хорошо. Мне кажется, рассмотрение пассивной системы, как Вы это пытаетесь сделать, при наличии достоверной информации об активных воздействиях, сильно обеднит результаты исследований.