Если смотреть на это дело как просто на решение уравнений в частных производных, то это скучно.
Ну зачем так банально? Я на
видение мира как уравнений в частных производных, и понимание его свойств как их решений.
Плюс к тому, лектор и семинарист по этому предмету в своё время за год успешно привили мне стойкое отвращение к нему.
Искренние сочувствия, и надеюсь, что это пройдёт.
Дама, перед которой преклоняюсь - это дифференциальная геометрия. Умница, красавица... :-)
А она, кстати, ураматам кузина двоюродная :-) Тензорные поля на многообразиях, знаете ли, уравнения на них, решения и всякое такое.
И функан тут же подсуетился: спектры, мол, дифференциальных операторов.
-- 26.06.2017 23:07:28 --Вот например, красивейшая тема. Есть у вас ротор или дивергенция векторного поля. И надо само поле восстановить. Так сказать, "найти первообразную". В школе этот вопрос аккуратно обходится: мол, для
-мерного пространства у нас есть определённый интеграл, и точка. Нету неопределённого. Как нету? Операции дифференцирования есть (целый набор), а обратных нет?
И тут оказывается, что обратная операция - это решение дифура, ДУЧП. Оказывается, что в 1-мерном случае была неоднозначность типа "добавлять константу", а в
-мерном случае неоднозначность устроена намного сложнее, может быть бесконечномерной (типа "с точностью до произвольной функции"). Её можно ограничить, если ввести границы и граничные условия. Но тут очень тонкая грань, надо "не переборщить": сначала у вас получается много решений, потом меньше, потом одно, а потом ни одного - задача будет переопределённой, некорректной.
Допустим, вы хотите найти какой-то пример "первообразной" (например, чтобы потом из соответствующего класса первообразных выбрать нужный). Тогда рецепт известен, он находится как "ньютоновский потенциал" (для задачи
или
или
). Что такое "ньютоновский потенциал"? По сути, функция Грина (для бесконечного пространства). Решает ли это полностью задачу? Надо учесть ещё ротор и гармоническое слагаемое. В целом задача описывается как разложение Гельмгольца.
Обобщим задачу в трёх направлениях:
-
-мерное пространство;
- область, ограниченная топологически сложными границами, с выколотыми множествами, и т. п. (например, в 3-мерном пространстве можно выколоть линию, и по ней пустить ток, тогда магнитное поле этого тока будет безвихревым, но непотенциальным);
- всё пространство может быть искривлённым - неким 3(
)-мерным многообразием. Например, сферой (хотя это азбучный, но не самый сложный случай).
И всем этим занимается уже дифференциальная геометрия. А если решать уравнение не для векторов, а для дифформ, для тензоров?