Всем привет! Мне нужно найти или вычислить формулу, с помощью которой задается момент инерции боковой поверхности шарового сегмента. Максимум, что удавалось найти, так это табличные моменты, например, вот тут -
http://mash-xxl.info/page/0410581392012 ... 101234203/ - есть момент

, при котором ось Z направлена перпендикулярно к плоскости сегмента. Фактически, если расположить оси X и Y перпендикулярно к Z и друг к другу, то нужны моменты

и

. Страницей ранее, вот здесь -
http://mash-xxl.info/page/1762240810020 ... 184215052/ - указаны, к примеру, моменты инерции для боковых поверхностей конуса и усеченного конуса. К сожалению, физика - это не моя специальность, и самостоятельно нужный момент посчитать не вышло.
Основываясь на статье с Википедии
https://ru.wikipedia.org/wiki/Момент_инерции и особенно на выводе формулы момента инерции сплошного конуса, я решил пойти с конца. Иными словами,

Если бы мы рассчитывали момент инерции для оси Z, то dJ представляло бы собой момент инерции тонкого диска, смотрели бы мы из плоскости сегмента, и эти диски постоянно уменьшались бы в размерах, вплоть до 0. Но в данном случае, мы смотрим сбоку или сверху - кому как больше нравится, хотя это не имеет никакого значения, ведь у нас именно шаровой сегмент - и мы наблюдаем круговые сегменты. Сначала они увеличиваются в размерах, ровно до середины сегмента, далее абсолютно так же уменьшаются. Следовательно, нужно найти или вычислить формулу момента инерции кругового сегмента по вертикальной оси, проходящей через центр тяжести сегмента. И тут проблема - гугл подсказывает только горизонтальные моменты. Что здесь можно сделать?
Если кто-то уже занимался этим вопросом и/или хотя бы может составить и обосновать интегральное выражение, из которого выводится формула, то буду очень признателен.