Пример: теорема о промежуточном значении непрерывной функции. Теорема сама по себе никакой смысловой нагрузки не несет
итак очевидно, что, если мы прочертим линию от нижней полуплоскости к верхней, не отрывая ручку от бумаги, то обязательно пересечем общую границу этих полуплоскостей.
Вон как? Ну попробуйте "бумагой и ручкой" ответить вот на какой вопрос: сущесвует ли непрерывная функция, не константа, определённая на множестве всех действительных чисел, у которой все значения - рациональные (или, наоборот, все они - иррациональные) числа?
Всегда ли используя теорему нужно знать её доказательство для полного понимания этой теоремы?
Это всё равно что спрашивать, можно ли пользоваться программой, если не читал её исходный код. Я, кстати, считаю, что нельзя, но всё равно пользуюсь.
Ричард Столлман половину жизни посвятил похожему вопросу: можно ли пользоваться программой, если она несводона?
Естественно, чтобы просто брать и
пользоваться теоремой, знать её доказательство не обязательно. Ну хорошо, пусть вы со мной не согласны - доказательство теоремы Ферма знаете? Вы можете есть пользоваться? А теоремой о четырёх красках? А в столбик когда учитились умножать в первом классе, тоже доказательство смотрели, почему этот метод работает? Когда метод Дейкстры писали на языке Турбо Паскаль, задумывали, почему он работает?