Brukvalub писал(а):
Профессор Снэйп писал(а):
Надо сказать, что разного рода "неопределённости" в матане происходят исключительно из-за некорректного использования обозначений.

А чем Вы уди
влены?
Вот есть, допустим, теорема: если последо
вательности

и

сходятся к дейст
вительным числам

и

соот
ветст
венно, то последо
вательность

также сходится и её предел ра
вен

. В теореме ничего не го
ворится о сходимости этой последо
вательности
в случае, когда

. Однако иногда (но не
всегда) последо
вательность

при
всё же сходится и тогда её предел ни с того ни с сего начинают тракто
вать как "одно из
возможных значений неопределённого
выражения

".
В случае, когда

,
выражение

, фигурирующее
в теореме, имеет
вполне чёткий, определённый смысл: это результат операции деления на ненуле
вой элемент
в поле дейст
вительных чисел. При

это теряет смысл и начинаются какие-то нелепые фантазии, которым может быть только одно опра
вдание: при надлежащей осторожности
в обращении они экономят
время, поз
воляя путём некорректных, но коротких
выкладок приходить к пра
вильному результату. Игры со значками --- это хорошо, играйте сколько
влезет, но не надо пытаться прида
вать получающимся
в ходе таких игр
выражениям какой-то содержательный смысл, особенно "дейст
вуя по аналогии". Не делится
ноль на
ноль в 
и
всё тут, ибо операция
взятия обратного элемента
в поле по определению частичная. Попытки поделить, используя значения предело
в частных --- они от лука
вого.
То же самое с
воз
ведением
в степень. Операция

не определена на

при

и го
ворить о значении
выражения

как о результате этой операции бессмысленно.
А между тем
в другой области математики, более фундаментальной чем матан --- математической логике, есть 3 определения операции
воз
ведения
в степень: одно для множест
в, другое для ординало
в, третье для кардинало
в. Согласно
всем трём определениям

. Так что от
вет на исходный
вопрос более чем оче
виден.
Добавлено спустя 2 минуты 43 секунды:bot писал(а):
А как рассматри
вать предел
Профессор Снэйп писал(а):
исходя из их теоретико-множественных определений
?
Вот такой, к примеру:

Вы хотите, чтобы я Вам
в ZFC доказал, что значение этого предела ра
вно

или как?