Есть матричное уравнение

, где V, A, L - матрицы, все элементы которых - линейные многомерные многочлены, Y - комплексная матрица
уравнение решается итеративно, методом Ньютона-Рафсона, и другими подобными методами, но алгоритмы очень трудоёмкие даже для простейших моделей
возникла идея свести это уравнение к СНАУ. Для этого я преобразую исходное уравнение к виду

, где

- союзная матрица
элементы союзной матрицы, так же как и сам определитель уже многомерные многочлены
в итоге СНАУ в принципе получена, но оказалась чрезвычайно громоздкой. в принципе её можно решать методом Зейделя, но выигрыш перед непосредственным решением матричного уравнения представляется сомнительным
весьма заманчивым на мой взгляд является представление многочленов в виде представленной мной ранее факторизации,
это позволит получить обозримые результаты и упростить их интерпретацию, решить систему в факторизованном виде разумеется тоже значительно проще
мои предположения основаны на теореме Колмогорова из которой следует что любая функция многих переменных может быть представлена суперпозицией одномерных функций, число которых

- где N - число переменных, т.е. видимо есть возможность существенно сократить размеры этих полиномов, если даже не точно, то аппроксимировать их с заданной точностью,
но мне не хотелось бы использовать для этого нейросетевой подход, а желательно перейти от исходных многочленов к новым функциям аналитически