2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Дифференциальное уравнение с рациональными решениями
Сообщение21.09.2015, 12:21 
Аватара пользователя
Пусть ОДУ второго порядка, разрешенное относительно старшей производной:
$$y'' + f(x,y,y') = 0,$$
где $f$ - рациональная функция своих переменных, имеет рациональное общее решение
$$y = F(x,C_1,C_2),$$
то есть $F$ - также рациональная функция своих переменных.

Всегда ли такие ОДУ обладают точечными симметриями? Экспериментально у меня получается, что ответ положительный. Но теоретическую базу подвести под это не удается :-)

 i 
DLL в сообщении #1055773 писал(а):
Сорри, опечатка! Вместо
$$ y = f(x,C_1,C_2) $$
надо читать
$$ y = F(x,C_1,C_2).$$
Deggial: формула поправлена.

 
 
 
 Re: Дифференциальное уравнение с рациональными решениями
Сообщение23.09.2015, 17:04 
 i  Фрагмент дискуссии, не привносящий в нее ничего нового, отделен сюда.

 
 
 
 Re: Дифференциальное уравнение с рациональными решениями
Сообщение23.09.2015, 20:01 
Аватара пользователя
Не знаю, может, дурацкий совет, но: не посмотреть ли в сторону преобразований, сохраняющих такой вид уравнения?

 
 
 
 Re: Дифференциальное уравнение с рациональными решениями
Сообщение24.09.2015, 09:54 
Аватара пользователя
Хорошая мысль. По идее это должно быть тесно связано с теорией алгебраических функций.
Дело в том, что симметрий (экспериментально) не просто много, а алгебра 8-мерная, что является исключительным случаем.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group