Хотя пусть для начала слагаемые - именно гауссианы, а искомые параметры - только абсциссы пиков и коэффициенты линейной комбинаци; "сигма" у гауссиан пусть фиксированная. Это уже даёт нетривиальную задачу.
В конкретно этом случае, мне кажется, можно так: сделали преобразование Фурье, поделили на преобразование Фурье от гауссиана, сделали обратное преобразование Фурье, получили набор
-функций в точках, где были гауссианы, с соответствующими коэффициентами. Это если функция была точной суммой. В противном случае получим какую-то погрешность, и это уже задача по анализу, в каком классе функций какая будет погрешность.