А вот кстати, как раз к вопросу об упорядоченности.
Возьмём отрезок
и точно знаем что 0 здесь самое маленькое число из всего отрезка, вычёркиваем, получаем
и со следующим "самым малым" получаем классический затык - для любого
найдет меньшее
. Насколько я понимаю такое дело общепринято называется открытым множеством и делается вывод, что в нём нет элемента меньшего всех прочих. По сути как раз крест на упорядоченности ставится путём "наименьшего".
Но вот беспокоит меня (и не только в данном вопросе) один момент - само такое рассуждение основывается на ряде шагов "для любого
есть другое
", где
- номер шага и получается что доказательно принимает вид... как бы это сказать... "счётной индукции". Что имеется ввиду - когда мы доказываем, что, например, не существует натурального большего любого другого натурального мы точно так же говорим "для любого
есть большее
, а значит никакое
самым большим быть не может". Это очень логично и правильно, но применимы ли подобной структуры рассуждения на несчётных множеств? Ведь даже доказательство Кантора о несчётности собственно вещественных идёт похожим путём, но делает разворот в самом конце, что "для любого
существует
, а значит мы не охватили в этой таблице (а по сути в этом ряде шагов) все вещественные, они существуют за её пределами". Т.е. возникает каверзный вопрос - а вправе ли мы делать то что я назвал "счётной индукцией" выше базисом для каких ли бы то ни было рассуждений о вещественных? Нет ли такой подковырки, что вещественные они априори находятся за пределами любых попыток их пересчитать в явной или неявной форме?