2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Хорошие и плохие функции
Сообщение26.03.2015, 05:38 
Заслуженный участник
Аватара пользователя


21/12/05
5936
Новосибирск
Padawan в сообщении #990082 писал(а):
Правда, это можно исправить, условившись к множеству задания основных элементарных функций относить только внутренние точки.

А зачем исправлять? Просто взять $f(x)=|x|.$

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение26.03.2015, 11:09 
Заслуженный участник
Аватара пользователя


11/03/08
10132
Москва
Anton_Peplov в сообщении #989884 писал(а):
Мне не известно никакого способа определить простейшие элементарные функции иначе, чем перечислив их все. Подозреваю, что такого способа просто нет - нет свойства, присущего всем простейшим элементарным функциям и только им



Погуглите на Лиувилля. Он, собственно, дал такое определение в связи с задачей интегрирования функций

(Оффтоп)

Чем интеграл отличается от женщины? Интегралы бывают и неберущиеся!

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение26.03.2015, 15:08 
Заслуженный участник
Аватара пользователя


20/08/14
8816
Евгений Машеров в сообщении #995847 писал(а):

Погуглите на Лиувилля. Он, собственно, дал такое определение в связи с задачей интегрирования функций


Погуглил "элементарные функции по Лиувиллю". Нашел глубоко нетривиальное определение. Осталось разобраться, что там к чему и почему. Спасибо за наводку.

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение31.03.2015, 07:43 
Заслуженный участник
Аватара пользователя


26/01/14
4904
Anton_Peplov в сообщении #989884 писал(а):
Мне не известно никакого способа определить простейшие элементарные функции иначе, чем перечислив их все. Подозреваю, что такого способа просто нет - нет свойства, присущего всем простейшим элементарным функциям и только им - и само понятие простейшей элементарной функции скорее историческое, чем математическое. Это просто функции, с которыми математики столкнулись в практических задачах. Но если вдруг такой способ есть - поделитесь, мне интересно.


Есть способ.
Я только уберу из простейших элементарных функций тригонометрические: средствами ТФКП они выражаются через показательную.
Остаются следующие: линейная, показательная, логарифмическая, степенная.
И вот какие красивые определения у них.

Линейная функция - это непрерывная функция на $\mathbb{R}$, удовлетворяющая $f(x+y)=f(x)+f(y)$.
Показательная функция - это непрерывная функция на $\mathbb{R}$, удовлетворяющая $f(x+y)=f(x)\cdot f(y)$.
Логарифмическая функция - это непрерывная функция на $\mathbb{R}$, удовлетворяющая $f(x\cdot y)=f(x)+f(y)$.
Степенная функция - это непрерывная функция на $\mathbb{R}$, удовлетворяющая $f(x\cdot y)=f(x)\cdot f(y)$.

Можно показать, что это именно определения, они однозначно определяют эти функции с точностью до какого-то коэффициента.

Другими словами, элементарные функции создала не просто слепая история. Как только мы определили сложение и умножение, класс элементарных функций возникнет с необходимостью.

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение31.03.2015, 13:38 
Заслуженный участник
Аватара пользователя


20/08/14
8816
Mikhail_K в сообщении #998338 писал(а):
Есть способ.


Какая невероятная красота! Спасибо!
Да, похоже, что с точностью до аддитивных и мультипликативных констант это определения. Хотя я не готов с места в карьер это доказать.

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение31.03.2015, 13:48 
Заслуженный участник


20/07/09
4026
МФТИ ФУПМ
При этом константы отправляются в далёкий полёт.

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение31.03.2015, 19:34 
Заслуженный участник
Аватара пользователя


09/02/14

1377
Mikhail_K в сообщении #998338 писал(а):
Степенная функция - это непрерывная функция на $\mathbb{R}$, удовлетворяющая $f(x\cdot y)=f(x)\cdot f(y)$.

Можно показать, что это именно определения, они однозначно определяют эти функции с точностью до какого-то коэффициента.

Это ведь неправда, да?

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение31.03.2015, 20:01 


25/08/11

1074
Это правда, есть даже в первом томе Фихтенгольца. Началось с функционального уравнения Коши для линейной функции. Есть и разрывные решения, но это уже не элементарный уровень-базисы Хамеля, аксиома выбора...

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение31.03.2015, 22:14 
Заслуженный участник
Аватара пользователя


09/02/14

1377
С точностью до какого коэффициента отличаются $x^2$ и $x$?

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение01.04.2015, 00:18 
Заслуженный участник
Аватара пользователя


20/08/14
8816
kp9r4d в сообщении #998660 писал(а):
С точностью до какого коэффициента отличаются $x^2$ и $x$?


Условию $f(xy) = f(x)f(y)$ удовлетворяют $y = x$, $y = x^2$ и вообще любая $y = x^n$. То есть это условие определяет класс степенных функций (а не какую-то конкретную).

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение01.04.2015, 00:23 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Mikhail_K в сообщении #998338 писал(а):
Логарифмическая функция - это непрерывная функция на $\mathbb{R}$, удовлетворяющая $f(x\cdot y)=f(x)+f(y)$.


Плюс забыли.

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение01.04.2015, 00:29 
Заслуженный участник
Аватара пользователя


09/02/14

1377
Anton_Peplov в сообщении #998698 писал(а):
Условию $f(xy) = f(x)f(y)$ удовлетворяют $y = x$, $y = x^2$ и вообще любая $y = x^n$. То есть это условие определяет класс степенных функций (а не какую-то конкретную).

Я это заметил, потому и сказал. Впрочем, видимо, все это тоже заметили, а потому сказал я это вообще зря. В общем, ладно. Кстати, если взять взять вместе с элементарным их "замыкание" относительно интегрирования, то требуемый класс и получится, непонятно только на кой; почему-то мне интуитивно кажется, что такие всякие определения в классическом анализе использующие понятие "алгоритма" до добра не доводят. Да и вообще ни до чего не доводят.

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение01.04.2015, 00:48 
Заслуженный участник
Аватара пользователя


20/08/14
8816
kp9r4d в сообщении #998706 писал(а):
Кстати, если взять взять вместе с элементарным их "замыкание" относительно интегрирования, то требуемый класс и получится


Требуемый класс - это класс хороших функций, замкнутый по уравнениям. Интегралом от какой элементарной функции является функция $x = x(a, b, c)$, выражающая корень уравнения $a^x + b^x + c = 0$?

kp9r4d в сообщении #998706 писал(а):
непонятно только на кой


Попробуйте, например, подобрать методом наименьших квадратов коэффициенты $m$ и $k$ в зависимости $y = mt^k$, и Вам очень захочется иметь функцию $x = x(a, b, c)$.

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение01.04.2015, 01:01 
Заслуженный участник
Аватара пользователя


09/02/14

1377
Anton_Peplov в сообщении #998715 писал(а):
Требуемый класс - это класс хороших функций, замкнутый по уравнениям. Интегралом от какой элементарной функции является функция $x = x(a, b, c)$, выражающая корень уравнения $a^x + b^x + c = 0$?

Ну окей, замыкаем не только по интегралам, но ещё и по взятию обратной (с некоторыми оговорками).
Anton_Peplov в сообщении #998715 писал(а):
Попробуйте, например, подобрать методом наименьших квадратов коэффициенты $m$ и $k$ в зависимости $y = mt^k$, и Вам очень захочется иметь функцию $x = x(a, b, c)$.

Да мне-то захочется, но мне вот ваше "иметь" не очень нравится. Вот обратную функцию к $x^4+bx^3+cx^2+dx+e$ имеете? Конечно! Ведь есть там какие-то формулы Феррари с четырёхэтажными радикалами, но если мне на практике понадобится найти обратную, я лучше тот же бинарный поиск (с некоторыми оговорками) сделаю, ну или пойду почитаю про более быстрые и эффективные алгоритмы. А то что оно у меня в каком-то там эфемерном "классе" лежит мне вот не холодно и не жарко. Всё оно лежит в классе всех функций, если уж на то пошло.

 Профиль  
                  
 
 Re: Хорошие и плохие функции
Сообщение01.04.2015, 01:18 
Заслуженный участник
Аватара пользователя


20/08/14
8816
kp9r4d в сообщении #998722 писал(а):
я лучше тот же бинарный поиск (с некоторыми оговорками) сделаю


Решить уравнение численными методами можно. Но есть много задач, где нас интересует не число, а именно функция. Как она ведет себя при изменении аргументов? Где экстремумы? Где нули? Где точки перегиба? Она ограниченная или нет? Периодическая или апериодическая?
Такие вопросы ставит физика. Физический закон - это уравнение. И от того, что подавляющая часть возникающих уравнений решается только численно, у физиков уже закончились цензурные слова в словарном запасе.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 42 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group