На всякий случай спрошу.
Задание: привести пример ограниченной, но некомпактной последовательности в пространстве
.
Норма, принятая в
:
.
Но если множество по этой норме ограниченное, то значит, мн-ва функций и их производных равномерно ограниченны, что влечет равностепенную непрерывность, а по теореме Арцела эти свойства дают предкомпактность, что для последовательности означает ее компактность (в смысле термина "компактная последовательность"). Таким образом, не существует некомпактной ограниченной последовательности в
.