В-Р+Г=2, говорят.
Это для недырявых (подобных сфере) вроде как нет?
Около года назад мне приходила в голову такая задачка, осталась уверенность что такое таки существует. попробую описать, что тогда надумал:
Возьмем тетраэдр. Спилим у него вершины. Получится многогранник 4 стороны которого - шестиугольники и 4 - треугольники
Идея в том, чтобы взять до кучи подобных кирпичиков и замкнууть их друг с другом треугольниками
При этом надо
0. Чтобы спил соседних вершин не касался друг друга
1. При стыковке треугольники были одинковыми
2. Грани на стыковках имели между собой угол, иначе получится не 6угольник, а что-то другое
Следующий шаг: возьмем 3 (одинаковых, правильных) тетраэдра. Выделим у каждого по одной стороне. Расположим их в пространстве так, чтобы эти стороны образовывали равносторонний треугольник (ну и чтобы биссекторные плоскость к этим сторонам совпадали). Чуть продавим их (симметрично) друг в друга.
Из соображений симметрии (1) выполняется. 2 тоже пока выполняется.
Получилась такая конструкция с дыркой, у которой надо еще спилить 6 углов (3 с одной стороны от той биссекторной плоскости и 3 с другой)
Ну, тут можно спилить эти углы плоскостью параллельной той биссекторной и ставить такие звенья друг на друга. Но тогда эта конструкция не замкнется, да и (2) не будет выполняться
Поэтому возьмем некий двугранный угол
Для достаточно больших
он должен быть. Расположим его так, чтобы его его биссекторная плоскость совпадала с вышеупомянутой биссекторной плоскостью к тем сторонам и чтобы спиливал он ото всех 6ти вершин помаленьку. Ну и осталось составить из этих звеньев замкнутую фигню
Из соображений симметрии (1) выполняться будет. Но вот хуже с (2). Не знаю, не вижу все до конца, лень все обсчитывать, но что-то мне подсказывает, что там может быть континуальное число расположений такого угла, в то время как (2) не выполняется только для конечного