Рассчитать интеграл от Гауссовой кривизны по поверхности(без краев)
ее отрезает плоскость
, берем верхнюю часть
это моя задача, которую я придумал и счел олимпиадной
вам надо ее решить
ну вот, можно достроить нашу поверхность до конуса, его гауссова кривизна будет равна нулю, на склейке(сплайне) будет хевисайдообразный скачек, и теперь если мы рассмотрим контур, лежащий на конусе, и найдет интеграл от гауссовой кривизны, то он будет равен интегралу от гауссовой кривизны на поверхности нашей фигуры
И теперь главное, поворот вектора, параллельно перенесенного по замкнутому контуру, равен интегралу от гауссовой кривизны по поверхности, заключенной в этом контуре(ну там с учетом ориентации и знака)
На конусе делать параллельный перенос легко, ибо он разворачивается в часть плоскости, и в итоге, после всего проделанного получается значение интеграла
И в принципе , если взять окружность, и поставить граничное условие, чтобы конец поверхности на окружности имел с ней одинаковый угол, тк чтобы можно было достроить конус, то тогда форма поверхности вообще не важна, интеграл будет один и тот же