2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4  След.
 
 Код бинома
Сообщение28.12.2014, 23:56 


06/02/14
186
Значение бинома Ньютона в развитии математики трудно переоценить:он лежит в основе решения многих задач и доказательств теорем.Казалось бы,что свойства биномиальных многочленов и их коэффициентов хорошо изучены и ничего нового найти здесь невозможно.Однако,занимаясь проблемой доказательства ВТФ в рамках классической математики, я к своему удивлению обнаружил неизвестное свойство бинома Ньютона, которое, по-видимому, и отражает связь этих двух фундаментальных законов математики.
Это свойство касается членов разложения биномов чётных степеней и формулируется следующим образом:
" Для всех чётных степеней бинома,кроме степени равной 2, сума членов разложения бинома стоящих на нечётных местах в разложении, не может быть степенью натурального числа равной половине степени самого бинома."
Действительно, в разложении бинома 4-ой степени $(x+y)^4 = x^4 +4x^3y +6x^2y^2 +4xy^3 + y^4$ выпишем сумму членов стоящих на нечётных местах,сделав замену $x^2 = a$ ; $y^2= b$.Получим $a^2+ 6ab +b^2 $.Это биномиальный многочлен квадрата только с другим коэффициентом.Однако,в разложении бинома коэффициенты жестко определяются " треугольником Паскаля".Следовательно, полученная сумма при любых натуральных $a ; b$ и не может быть квадратом натурального числа. Аналогично - для всех остальных чётных степеней бинома Ньютона.
Я назвал это свойство - код бинома, поскольку предполагаю что в нём находится ключ к разгадке тайны доказательства ВТФ. Или я не прав?
Поздравляю Всех с наступающим Новым Годом и Рождеством!
Желаю счастья и успехов в разгадке самой красивой тайны математики.

 Профиль  
                  
 
 Posted automatically
Сообщение28.12.2014, 23:59 


20/03/14
12041
 i  Тема перемещена из форума «Дискуссионные темы (М)» в форум «Карантин»
Тема перемещена в Карантин по следующим причинам:

Сформулируйте четко и явно предмет обсуждения.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение31.12.2014, 14:33 


20/03/14
12041
 i  Тема перемещена из форума «Карантин» в форум «Дискуссионные темы (М)»

PhisicBGA в сообщении #953785 писал(а):
у предполагаю что в нём находится ключ к разгадке тайны доказательства ВТФ.

Такого сорта предположения голословны и нуждаются в обосновании. Если их не поступит, тема будет перемещена в Пургаторий, ибо больше тут обсуждать особо нечего.

 Профиль  
                  
 
 Re: Код бинома
Сообщение31.12.2014, 14:47 
Заслуженный участник
Аватара пользователя


09/09/14
6328
PhisicBGA в сообщении #953785 писал(а):
Получим $a^2+ 6ab +b^2 $.

PhisicBGA в сообщении #953785 писал(а):
Следовательно, полученная сумма при любых натуральных $a ; b$ и не может быть квадратом натурального числа.

Ну да, при $a=4, b=6$ никогда $4^2+6\cdot 4 \cdot 6+6^2$ не будет равно $14^2$.
Lia в сообщении #954829 писал(а):
ибо больше тут обсуждать особо нечего.


-- 31.12.2014, 15:51 --

Впрочем, нет, -- к поздравлениям присоединяюсь :) Всех с Наступающим!

 Профиль  
                  
 
 Re: Код бинома
Сообщение31.12.2014, 15:54 
Заслуженный участник


20/12/10
9159
Кстати, число $x^4+6x^2y^2+y^4$ при натуральных $x$, $y$ действительно не может быть точным квадратом.

 Профиль  
                  
 
 Re: Код бинома
Сообщение31.12.2014, 20:18 


26/08/11
2117
nnosipov в сообщении #954858 писал(а):
Кстати, число $x^4+6x^2y^2+y^4$ при натуральных $x$, $y$ действительно не может быть точным квадратом.
При нечетных $x,y$ выражение делится на $8$ и не делится на $16$, ищем решений для взаимнопростых $x,y$ разной четности. Параметрицазия уравнения $a^2+6ab+b^2=c^2$ для взаимнопростых при четном $a$:

$\\a=2q(p+3q)\\
b=p^2-q^2\\
c=p^2+6pq+q^2$

$\gcd(p,q)=1$ разной четности. Тогда

$\\x^2=2q(p+3q)\\
y^2=p^2-q^2$

Из второго уравнения для Пифагоровых троек

$\\p=u^2+v^2\\
q=2uv
$

$x^2=4uv(u^2+6uv+v^2)$

Так как $u,v$ должны быть квадратами, получается бескнечный спуск. С Новым годом!

 Профиль  
                  
 
 Re: Код бинома
Сообщение31.12.2014, 20:46 
Заслуженный участник


20/12/10
9159
Да здравствует бесконечный спуск! С Новым 2015-м годом!

 Профиль  
                  
 
 Re: Код бинома
Сообщение31.12.2014, 21:30 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань

(Оффтоп)

Новому Году больше подходит подъем :D Пусть даже не бесконечный.

 Профиль  
                  
 
 Re: Код бинома
Сообщение01.01.2015, 06:12 
Заслуженный участник


16/02/13
4214
Владивосток
Shadow в сообщении #954925 писал(а):
бескнечный спуск
Таки напоминаю: как уже было сказано, $2^2+6\cdot2\cdot3+3^2=7^2$

 Профиль  
                  
 
 Re: Код бинома
Сообщение01.01.2015, 09:46 
Заслуженный участник


20/12/10
9159
iifat в сообщении #955006 писал(а):
Таки напоминаю: как уже было сказано, $2^2+6\cdot2\cdot3+3^2=7^2$
А что Вы имеете в виду?

 Профиль  
                  
 
 Re: Код бинома
Сообщение01.01.2015, 11:07 
Заслуженный участник


16/02/13
4214
Владивосток
Как понимаю, Shadow доказывает, что такое невозможно, не?

 Профиль  
                  
 
 Re: Код бинома
Сообщение01.01.2015, 11:35 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Он другое доказывает. Для другого уравнения, с четвертыми степенями.

 Профиль  
                  
 
 Re: Код бинома
Сообщение01.01.2015, 12:43 
Заслуженный участник


20/12/10
9159
Shadow в сообщении #954925 писал(а):
Параметрицазия уравнения $a^2+6ab+b^2=c^2$ для взаимнопростых при четном $a$:
$a=2q(p+3q)$
$b=p^2-q^2$
$c=p^2+6pq+q^2$
Вот здесь есть небольшая проблема: параметры $p$, $q$ не обязательно положительны, и это нужно как-то учесть в последующем рассуждении.

Я имел в виду более стандартное рассуждение: если $x^4+6x^2y^2+y^4=c^2$, то $(x^2+y^2)^4-(2xy)^4=(c(x^2-y^2))^2$, а уравнение $X^4-Y^4=Z^2$ не имеет решений, что доказывается методом спуска.

 Профиль  
                  
 
 Re: Код бинома
Сообщение01.01.2015, 13:14 


26/08/11
2117
nnosipov в сообщении #955077 писал(а):
Вот здесь есть небольшая проблема
Да Вы правы, как-то не заметил. Но легко устранимая. Поскольку один из параметров $p,q$ задается строго положительным, нужно выбрать $p\in \mathbb{N}$ , из-за последующем $p=u^2+v^2$ (хотя для дробей обычно знаменатель выбирается положительным, а у меня знаменатель $q$, да ладно)
nnosipov в сообщении #955077 писал(а):
Я имел в виду более стандартное рассуждение: если $x^4+6x^2y^2+y^4=c^2$, то $(x^2+y^2)^4-(2xy)^4=(c(x^2-y^2))^2$
Красиво :shock: но я такое никогда бы не заметил.

-- 01.01.2015, 12:35 --

Shadow в сообщении #954925 писал(а):
$x^2=4uv(u^2+6uv+v^2)$
Хм, если одно из $u,v$ отрицательный квадрат придется боротся с $a^4-6a^2b^2+b^4=-c^2$

 Профиль  
                  
 
 Re: Код бинома
Сообщение01.01.2015, 14:00 
Заслуженный участник


20/12/10
9159
Shadow в сообщении #955090 писал(а):
придется боротся с $a^4-6a^2b^2+b^4=-c^2$
Угу, а это равенство уже возможно в натуральных числах.

Вообще, то, что числа вида $x^4 \pm 6x^2y^2+y^4$ не могут быть точными квадратами --- это следствия неконгруэнтности числа $1$. И всё это фактически равносильно ВТФ для $n=4$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 47 ]  На страницу 1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group