2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Пружина
Сообщение02.12.2014, 16:46 
Заслуженный участник


05/02/11
1290
Москва
В не нагруженном состоянии пружина однородна. Её жёсткость $k$.
Затем на неё одновременно начинают действовать две силы: $f_1$ слева, и $f_2$ справа.
Любые другие внешние силы отсутствуют. Колебаний нет.
Найти потенциальную энергию деформаций пружины.

 Профиль  
                  
 
 Re: Пружина
Сообщение02.12.2014, 22:02 
Заслуженный участник
Аватара пользователя


18/09/14
5360
Как-то не очень понятно, что здесь "олимпиадного".
Ну, $F^2/2k$, где F есть минимальная из величин $F_1$, $F_2$.
В чём фишка-то?

 Профиль  
                  
 
 Re: Пружина
Сообщение02.12.2014, 22:39 
Заслуженный участник


05/02/11
1290
Москва
Mihr, чтобы ознакомиться с кругом идей, посмотрите задачу из олимпиады в Тбилиси-72; она тут бурно обсуждается.

 Профиль  
                  
 
 Re: Пружина
Сообщение03.12.2014, 08:09 
Заслуженный участник


03/01/09
1717
москва
Разбиваем ненагруженную пружину на большое число одинаковых частей, суммируем потенциальные энергии этих частей при нагрузке, в результате получим:$$E_p=\dfrac {f_1^2+f_1f_2+f_2^2}{6k}$$

 Профиль  
                  
 
 Re: Пружина
Сообщение03.12.2014, 10:20 


01/12/11

1047
dovlato, зачем вы создали новую тему? Сбежали от неудобных вопросов?

 Профиль  
                  
 
 Re: Пружина
Сообщение03.12.2014, 16:39 
Заслуженный участник


05/02/11
1290
Москва
Skeptic, я отвечаю на те вопросы, в которых вижу физический смысл. И, кр. того, если имею что сказать, на мой взгляд, интересного.
Вообще давайте придерживаться скучных норм общения. Я ж ведь не говорю всего того, что я думаю о содержательности иных выступлений.
Пример содержательного, хоть и сверхлаконичного сообщения - это ответ mihiv.

 Профиль  
                  
 
 Re: Пружина
Сообщение03.12.2014, 18:25 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Skeptic в сообщении #939448 писал(а):
dovlato, зачем вы создали новую тему? Сбежали от неудобных вопросов?

Видимо, от ваших "неудобных" (ошибочных) ответов.

 Профиль  
                  
 
 Re: Пружина
Сообщение03.12.2014, 21:57 
Заслуженный участник


05/02/11
1290
Москва
Хочу прокомментировать формулу, приведенную mihiv. У меня в аналогичной формуле произведение $f_1f_2$ входит не с плюсом,
а с минусом. Но у меня за положительное направление для обеих сил выбрано одинаковое. Очевидно, у mihiv для каждой силы
положительное направление выбрано своё - от пружины. В общем, дело вкуса и настроения, надо лишь аккуратно с ними работать.
Я как-то задался вопросом: что будет, если на оба конца пружины действуют две одинаково направленные силы?
Нейтральная линия в этой пружины разделит её на два куска одинаковой массы. Один кусок при этом сжат, а другой - ровно на столько же растянут,
так что общая длина пружины не изменится. В ф-ле mihiv следует положить $f_2=-f_1$; получим$$E=\frac{f_1^2}{6k}$$
Другой пример - пружину подвешивают за верхний конец (либо наоборот, ставят на нижний).
В этом случае $f_2=0$, и энергия деформации оказывается ровно такой же. Кстати, а насколько при этом уменьшится общая потенциальная энергия,
включая энергию в поле тяготения - не знаю. Просто не пытался проанализировать.
Наконец, если соединить $n$ одинаковых пружин, то при параллельном соединении энергия деформации уменьшается в $n$ раз, а при последовательном -
в $n$ раз вырастет.

 Профиль  
                  
 
 Re: Пружина
Сообщение04.12.2014, 22:35 
Заслуженный участник


03/01/09
1717
москва
dovlato в сообщении #939869 писал(а):
Другой пример - пружину подвешивают за верхний конец (либо наоборот, ставят на нижний).
В этом случае $f_2=0$, и энергия деформации оказывается ровно такой же. Кстати, а насколько при этом уменьшится общая потенциальная энергия,
включая энергию в поле тяготения - не знаю. Просто не пытался проанализировать.

Пусть в ненагруженном состоянии длина пружины $l$, направим ось $x$ вертикально вверх и сначала предположим, что силы тяжести нет. Пусть координата закрепленного конца равна $\frac l2$, а координата свободного конца $-\frac l2$. Теперь включим силу тяжести (в отрицательном направлении оси x). При этом точка пружины с координатой $x$ перейдет в точку с координатой $x+s(x)$. Полная потенциальная энергия пружины (упругости и в поле тяжести ) будет равна: $$E=\int \limits _{-\dfrac {l}2}^{\dfrac l2}[\dfrac {kl}2(s')^2+\rho g(x+s)]dx,\qquad (1)$$где $\rho =\dfrac ml$- линейная плотность пружины, $g$ - ускорение свободного падения.
Теперь очевидно, что деформацию пружины можно найти, минимизируя полную энергию (1) при условиях: $s(\dfrac l2)=0$ - закрепленный конец, $s'(-\dfrac l2)=0$ - свободный конец.
Уравнение Эйлера имеет вид:$$s''=\dfrac {\rho g}{kl}$$
К вариационной задаче можно перейти и в том случае, когда силы действуют на оба конца пружины.

 Профиль  
                  
 
 Re: Пружина
Сообщение06.12.2014, 16:00 
Заслуженный участник


05/02/11
1290
Москва
Я проделал вычисления по результату mihiv, получил в конце концов$$E=-\dfrac{(mg)^2}{6k}$$ Перепроверять уже не стал - ладно хотя бы отрицательная, как и должно быть.

 Профиль  
                  
 
 Re: Пружина
Сообщение07.12.2014, 15:16 
Заслуженный участник


03/01/09
1717
москва
dovlato в сообщении #941221 писал(а):
получил в конце концов$$E=-\dfrac{(mg)^2}{6k}$$

У меня такой же ответ.

 Профиль  
                  
 
 Re: Пружина
Сообщение08.12.2014, 22:41 


10/09/14
292
dovlato в сообщении #939172 писал(а):
В не нагруженном состоянии пружина однородна. Её жёсткость $k$.
Затем на неё одновременно начинают действовать две силы: $f_1$ слева, и $f_2$ справа.
Любые другие внешние силы отсутствуют. Колебаний нет.
Найти потенциальную энергию деформаций пружины.

Надо уточнить, что если мы хотим, чтобы $f_1\neq{f_2}$, то пружина будет двигаться ускоренно (как в Тбилисской задачи), в покое невозможно приложить к пружине разные силы, даже если например расположить пружину горизонтально, а к её конца через блоки подвесить разные грузы, то пружина "усреднит силу", т.е. результирующая будет $f_{\text{рез}}=(f_1+f_2)/2$

 Профиль  
                  
 
 Re: Пружина
Сообщение08.12.2014, 23:38 
Заслуженный участник


05/02/11
1290
Москва
Условие задачи не накладывает ограничений на то, движется она или нет. Сказано ровно то, что необходимо.
Но если пружина находится в однородном поле гравитации, то она может оставаться неподвижной при неравных силах.
Тот самый принцип эквивалентности.

 Профиль  
                  
 
 Re: Пружина
Сообщение09.12.2014, 21:56 


10/09/14
292
dovlato в сообщении #942744 писал(а):
Но если пружина находится в однородном поле гравитации, то она может оставаться неподвижной при неравных силах.

Что-то не очень понимаю. Надо наверно сделать оговорку , что в данном случае мы рассматриваем пружину с массой, которой уже нельзя пренебречь, и если такую пружину например поставить на стол, то на нижний её конец будет действовать сила реакции опоры, численно равная весу пружины, а сверху на неё будет действовать сила равная весу условно верхнего витка, но его можно уменьшать в пределе до бесконечно малой величины. Вы это имели ввиду?

 Профиль  
                  
 
 Re: Пружина
Сообщение11.12.2014, 16:01 
Заслуженный участник


05/02/11
1290
Москва
Имел в виду ровно то, что написал. На концы пружины действуют внешние силы $f_1$ и $f_2$.
А сама пружина имеет массу, причём её линейная плотность постоянна по всей длине. Так же, как в тбилисской задаче.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 15 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group