Mathematical viewpoint
Ну это ещё довольно далеко от того, что перечислили вы.
И при чём там некоммутативная геометрия - всё равно не понимаю.
Для меня очень хорошо что Вы об этом написали - у меня назревал вопрос что из профессиональной литературы почитать об уравнениях Янга-Миллса (безотносительно к физике, чисто математические монографии и учебники) ?
А безотносительно к физике - пожалуй, что и не бывает. Это предмет теоретической физики и математической физики, как ни крути.
Знакомство с ними я бы рекомендовал начать с
Рубаков. Классические калибровочные поля.Но перед этим или параллельно с этим - познакомиться (вкратце, поверхностно) с такой областью математики, как нелинейные дифференциальные уравнения и солитоны.
А вот куда продолжать в математическом плане - это я не знаю.
По-моему Ваш вопрос более чем риторический. Вы то сами как думаете - я там всё понимаю ?
Нет, это вопрос не риторический, а вполне дихотомический: в зависимости от ответа разговор пойдёт либо по одному руслу, либо по другому.
Собственно, основная идея квантовой теории поля - изложена именно в этой популярной книжке. Чтобы посчитать любой процесс (в квантовой физике - это означает найти вероятность этого процесса), надо посчитать диаграмму. Диаграмма "условно" изображает частицы, движущиеся по линиям (в каком смысле условно - Фейнман рассказывает). Линиям и точкам (вершинам) ставятся в соответствие определённые множители и интегралы. В результате, получается большое выражение, которое можно посчитать. Правда, интегралы расходятся, но это другая проблема.
Основная идея теории струн - это замена точечных частиц на протяжённые отрезки. На диаграммах, поскольку они пространственно-временные, это означает, что линии будут заменены на "ленты, полосы" - так называемые мировые листы (2-мерные, в
-мерном пространстве-времени). Там, где раньше несколько линий сходились в точке (вершине), теперь ленты соединяются между собой в каком-то стыке, сливаясь концами или распадаясь посередине. Можно рассматривать замкнутые петельки - они будут изображаться не лентами, а трубками. В общем, этой диаграмме тоже можно сопоставить большое выражение, которое в принципе можно посчитать. В принципе - потому что пока не разработано способов его расчёта, оно слишком бесконечномерное для этого.
Что такое "все элементарные частицы суть струны"? Это значит, что даже когда мы рассматриваем одну-единственную струну, летящую саму по себе ("ленту"), мы имеем нетривиальную квантовую задачу. В этой струне могут быть колебания, как в обычной гитарной струне (трудновато представить себе гитарную струну с концами в воздухе, но это мелочь). Набор этих колебаний квантован, и если струна находится в состоянии одного из таких колебаний - она выглядит издалека как частица с определённой массой. А если колебание другое - то и масса другая. Когда такие струны взаимодействуют (в вершине), то их колебания перераспределяются, и получаются законы взаимодействия разных типов частиц.
Что такое брана? Это дальнейшее обобщение идеи струны - увеличим размерность ещё на 1, 2 или сколько-то. Была струна одномерная - стала
-мерная (мы помним, что по-прежнему
). Имея в нашей модели несколько типов объектов, скажем, струны и браны, можно задать законы взаимодействия между ними, например, такие что "конец струны всегда принадлежит какой-то бране". А можно - и другие. В частности, можно предположить, что некая большая 3-мерная брана - наш реальный мир, который вложен в объемлющий
-мерный "струнный мир". Одна это брана или не одна - неизвестно, другие такие браны были бы для нас "параллельными Вселенными".