Главный член в разложении??
Извините, не понял, о каком разложении идет речь?
Ну раз тут физика, мб из каких-нибудь энергетических соображений это следует?
Индекс многогранника - это геометрия, и то, что он растет при искажении, устанавливается тоже геометрически. Физика здесь проявляется следующим образом. Если многогранник с сжатой в нем жидкостью искажать, оставляя неизменным объем, то, вследствие несжимаемости жидкости, будет оставаться постоянным объем пустот

(как разность объема многогранника и объема жидкости):

Если обозначить индекс неискаженного многогранника

, а индекс искаженного

, то будет иметь место соотношение:

откуда радиус свободной поверхности жидкости в искаженном многограннике:

Отсюда видим, что в искаженном многограннике с ростом его индекса радиус свободной поверхности жидкости уменьшается (следовательно, растет давление). При этом жидкость глубже входит в двугранные углы многогранника и разность

площади поверхности многогранника и поверхности жидкости, казалось бы, должна уменьшаться. Но на самом деле это не так - ведь сам многогранник тоже изменился. Поэтому, если до искажения эта разность была

, то после искажения стала:

то есть даже несколько увеличилась. Тем не менее, площадь поверхности жидкости при деформации становится больше, т.к. при этом растет площадь поверхности самого многогранника, но это уже вопрос геометрии. А работа

сил, деформирующих многогранник, равна:

где:

- коэффициент поверхностного натяжения жидкости;

- площадь поверхности жидкости в искаженном многограннике;

- площадь поверхности жидкости в неискаженном многограннике.
Если же убрать те силы, которые искажали многогранник, то жидкость, стремясь уменьшить свою поверхность, сможет это сделать только за счет увеличения радиусов свободной поверхности (уменьшая давление), приводя многогранник в состояние наименьшего индекса, когда он становится наиболее симметричным. При этом вернется та работа, которая была затрачена на искажение многогранника.
А точные значения привести можно, для длины ребра 1 скажем?
Приведенные значения посчитаны с точностью до второго знака. Можно посчитать и точнее, но какой в этом смысл?
Что касается единичной длины ребра, то здесь дело в следующем. Индекс многогранника в том виде, который приведен выше, имеет размерность длины и линейно зависит от размера многогранника. Если брать разные многогранники с единичной длиной ребра, то они окажутся разных объемов, а индексы нужно сравнивать у равновеликих тел. Поэтому, если возьмем многогранники с одинаковой длиной ребра, посчитаем их индексы и приведем к одному объему, то получим те же пропорции, которые приведены.