Совсем останавливаться не предполагаю до достижения глобальной цели.
Ну тогда никаких "наскоков" и "забеганий вперёд" не нужно. Они даже вредны!
Но вот только не верится мне. Энтузиазм у таких храбрых портняжек очень быстро пропадает. Поначалу "не предполагаю", а потом лезут какие-нибудь отговорки типа "семья-работа-времени нет", и всё, сдулся. Пройти на одном энтузиазме длинный многолетний путь - весьма непросто. Тут в груди должен настоящий огонь гореть, а не просто так спичка.
Всё это уже давно проделано. Включая попытки разобраться в Ландау-Лившице. Безуспешные.
"Собрать из кусочков" на основе ЛЛ цельную картину пока так и не удалось.
Ну тогда конкретнее. Выпишите здесь формулы: (32.7), (36.13), (d.13), (28.1), (27.3), (28.5), (c.4) (она удобней, чем (c.3), потому что меньше дифференцирований выполнять). Этого, в принципе, достаточно, но придётся делать дополнительные действия: чтобы вычислить волновую функцию для произвольных
потребуется сначала по (d.13) и (c.4) вычислить соответствующие
и
выполнив
и
дифференцирований. Чтобы не делать этого каждый раз заново, удобно составить табличку готовых результатов, и такие таблички в ЛЛ-3 приведены: для радиальной части в сноске под формулой (36.13), а для угловой - в конце § c математических дополнений. Ну ладно. Для начала, выпишите их, и подставьте все друг в друга (кроме формул (d.13) и (c.4)), и посмотрите на результат. Прямо здесь, в этой теме.
P. S. Лифшиц пишется через "ф", в данном случае (вообще, вариантов этой фамилии очень много, включая "Липшиц" и "Липшец").
Мне бы задачник по матану такой, чтобы там физических задач побольше. Лучше если совсем без абстрактных примеров.
Такие бывают?
Те, что уже посмотрел (Демидович, Берман) мало годятся на эту роль. Физические задачки там с лупой розыскивать приходится.
Вы неправы. Вам нужен задачник по матану, чтобы в нём было побольше "расчётных" задач, и поменьше "доказательных". Эти "расчётные" задачи всё равно всегда будут абстрактными, с этим ничего не поделаешь. Но вы научитесь считать, понимать и читать формулы, анализировать функции. А это и нужно. Демидович на эту роль вполне годится, кажется.
И вам не нужно выискивать в задачнике отдельные задачи с лупой, а потом решать их. Нет, вам нужно массово прорешивать задачник, "от сих до сих". Это суровая тренировка, как в "курсе молодого бойца", чтобы "накачать мышцы", необходимые, чтобы идти дальше, и читать учебники по физике. Но если её не пройти, то дальше, в учебниках по физике, вы будете путаться в формулах на каждом шагу, как будто идёте по болоту. У вас возникнет отвращение к формулам, недоверие к ним, нежелание разбираться, и в конце концов, вы перестанете читать формулы, а в них заключена главная суть учебников по физике. Так что, вы перестанете усваивать физику из учебников по физике. Катастрофа. Результат не достигнут. Я такое видел у своих сверстников, увы.
А ведь решение таких конкретных прикладных задач оно обычно гораздо больше мотивирует.
Да, с мотивацией в "курсе молодого бойца" тяжеловато. Ну, можно попробовать взять задачник по физике, и прорешивать его параллельно с задачником по математике. Чтобы вы увидели, как математические навыки реально пригождаются в физических задачах. Хотя таких "параллельных" задачников очень трудно подобрать.
Правильно ли я понимаю, что радиальная плотность прямо пропорционально зависит от радиуса и от объёмной плотности.
Нет. Видите там множитель
? Это значит, что радиальная плотность
- зависит от радиуса не прямо пропорционально, а пропорционально второй степени. Нарисуйте график
и посмотрите на него внимательно. Вот это - квадратичная пропорциональность, а не прямая. А прямая пропорциональность - это как график
Не надо их путать.
С объёмной плотностью - да, пропорциональность прямая.
И так как в данном случае с уменьшением радиуса, объёмная плотность хоть и возрастает, но медленнее чем убывает радиус.
Поэтому и радиальная плотность в целом уменьшается с уменьшением радиуса.
?
Объёмная плотность хоть и возрастает, но медленнее, чем убывает
квадрат радиуса. (Да, заодно и медленнее, чем убывает радиус, но это здесь не важно.) Поэтому и радиальная плотность в целом уменьшается с уменьшением радиуса.
В учебнике матанализа, это теория пределов, и сравнение бесконечно больших и бесконечно малых величин.
Необычная штука эта КМ.
Интуитивная логика подсказывает, что при попадании электрона внутрь протона должно произойти что-то особенное.
Превращение, наподобие как в случае столкновения электрона с позитроном.
Например, превращение в нейтрон, с последующим быстрым обратным "распадом."
Такое имеет место быть в КМ на самом деле при этом?
Во-первых, "попадания" на самом деле практически не происходит. Дело в том, что максимум, о котором мы говорим, - у объёмной плотности вероятности. А плотность - это всё-таки плотность. Чтобы получить и оценить саму вероятность, мы должны эту плотность умножить на объём. А какой у протона объём?
Вот смотрите. Плотность вероятности "размазана" по радиусу до радиуса Бора. Можем очень грубо считать её постоянной до этого радиуса (мы несильно ошибёмся, не более чем на величину порядка единицы - то есть, меньше чем в 10 раз - меньше чем на порядок). Радиус Бора - это пол-ангстрема, ну можно округлить до ангстрема. Радиус протона - это фемтометр (тоже округляя до единицы, на самом деле 0,8 фм), то есть, в 100 000 раз меньше. Объёмы соотносятся как кубы линейных размеров, так что на объём протона приходится 1/1 000 000 000 000 000 (эту величину запишем
) от объёма атома. Вот поэтому и вероятность у электрона оказаться "в протоне" будет столько же - от вероятности оказаться в атоме, то есть, от единицы.
Дальше, а что должно произойти? Превращение в нейтрон? Но суммарная энергия протона и электрона - меньше энергии нейтрона. Превращаться в нейтрон просто невыгодно! (Не во всех атомах, бывают радиоактивные атомы с таким типом радиоактивности, как электронный захват, - там это выгодно и происходит.) Поэтому электрон просто отскакивает от протона, и летит по своим делам дальше.
В-третьих, допустим, мы рассматриваем "превращение в нейтрон, с последующим быстрым обратным распадом". Да, такое может быть. Но как это проявится физически, на самом деле, в наблюдательных проявлениях? А никак! Засечь мы это не можем, "поймать" нейтрон на месте преступления - тоже. Так что, можно сказать, что фактически так и происходит - иногда происходит такое "превращение в нейтрон с обратным распадом", но очень редко и без последствий. Точнее, одно последствие есть: поправка к уровню энергии электрона в атоме. Очень малая. Её можно вычислить. И её можно попытаться измерить. И такая поправка действительно обнаруживается. Но бо́льшую часть этой поправки составляет другой процесс: не превращение протона и электрона в нейтрон, а испускание электроном фотона. Это называется "сдвиг Лэмба", и он был измерен в 1947 году, и позволил в 1948 году достроить квантовую электродинамику - очень важную теорию, на которой основаны все современные теории микроскопической физики. Квантовая электродинамика "углубляется на один шаг глубже", чем квантовая механика, и теории типа квантовой электродинамики (три модели для трёх типов взаимодействий) образуют Стандартную Модель элементарных частиц. А можно ли в этом сдвиге измерить ту часть, которая соответствует превращению протона и электрона в нейтрон - я, честно говоря, не знаю. Кажется, она ещё намного меньше, и засечь её с нашей точностью измерений нереально. Но в принципе, она там есть.
Спасибо, с этим теперь мне всё ясно. Раньше думал, что кольцо. А оказывается сгущение к центру.
Особенно интересны в связи с этим рассуждения на тему "почему электрон не падает на ядро."
Перефразируя слова о верчении Земли, можно в этом смысле сказать: "И всётаки он падает."
Да, именно, на самом деле он падает! :-) Но не всегда, а только в
-состояниях.
Но падает и отскакивает. И толку с этого немного. Дело-то в том, что "электрон падает на ядро" в классической физике - это сокращение полной фразы, которая подразумевает, что он "падает, теряя всю энергию". Вот этого - в квантовой механике не происходит. Электрон не теряет энергию при падении, а остаётся всегда на одном и том же энергетическом уровне.
Не радиуса, а площади поверхности (объёма) сферы (слоя). Неверно выразился.
Т.е. радиальный объём (если так можно выразиться) убывает быстрее, чем возрастает объёмная плотность.
Поэтому и радиальная плотность с уменьшением радиуса уменьшается несмотря на возрастание объёмной.
?
Да, вот так верно.