2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Задача по мат.статистике на полноту и достаточность
Сообщение12.09.2014, 18:13 
Здравствуйте!
Задача:$S_1$ и $S_2$ две достаточные статистики. $S_1$ -полная, $S_{2}$ нет. Можно ли представить одну из статистик как детерминированное преобразование другой?

Я так понимаю,что детерминированное преобразование-это какая-то измеримая и необратимая функция.
Мои рассуждения:
Условное мат.ожидание $E(S_{1} |  S_2)$ не зависит от параметра. Потом рассмотрела функцию $g(S_1 ) =  S_1 - E( S_1|  S_2) $, посчитала мат.ожидание,пришла к выводу,что $S_2$ тоже полная(противоречие).
Но мое решение было раскритиковано на стадии функции g. Подскажите,пожалуйста,с какой стороны подойти к этой задаче.

 
 
 
 Posted automatically
Сообщение12.09.2014, 18:17 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Тема перемещена в Карантин по следующим причинам:

1. Запишите формулы в соответствии с требованиями Правил форума, т.е. в $\TeX$.
Краткие инструкции можно найти здесь: topic8355.html и topic183.html.
Кроме этого, в теме Видео-пособия для начинающих форумчан можно посмотреть видео-ролик "Как записывать формулы".

2. И все же узнайте, что такое детерминированное преобразование.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение13.09.2014, 16:22 
Аватара пользователя
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Вернул
Involution в сообщении #907014 писал(а):
Но мое решение было раскритиковано на стадии функции g.
Интересно, что бы это значило?

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение14.09.2014, 09:18 
я использовала,что g зависит только от $S_1$, и забыла про $S_2$

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение14.09.2014, 09:36 
Аватара пользователя
См. в учебнике А.А.Боровкова "Математическая статистика" теорему 4 параграфа 14 гл. 2 (1984 г. - стр. 145). Она, правда, опирается ещё на одну теорему о существовании минимальной достаточной сигма-алгебры, но скомбинировать док-во требуемого факта из них можно. Теорема 4 утверждает, что любая полная достаточная статистика является минимальной. Минимальная достаточная статистика в терминологии этого учебника - та, что является измеримой функцией любой другой достаточной статистики.

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение14.09.2014, 12:48 
а как можно доказать,что существует такая измеримая функция?

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение14.09.2014, 13:47 
Аватара пользователя
Вы ответ выше прочитали?

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение14.09.2014, 14:59 
т.е.,учитывая теорему, минимальная статистика не может быть неполной?

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение14.09.2014, 18:26 
Аватара пользователя
Минимальная может быть неполной. Так же как всякая селёдка - рыба, но не всякая рыба - селёдка.

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение15.09.2014, 15:39 
Получается по 4ой теореме $S_1$ будет минимальной.Из 3го определения статистика минимальна т.и т.т.,к. она подчинена любой достаточной,т.е.,например, $S_2$,следовательно,существует измеримая функция $S_1=f(S_2)$ (из определения о подчиненных статистиках. Т.о. если положит f=g, то получим решение задачи. Правильно?

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение15.09.2014, 17:21 
Аватара пользователя
Да, разумеется.

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение15.09.2014, 20:23 
Получается детерминированное преобразование -это и есть измеримое?

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение15.09.2014, 22:21 
Аватара пользователя
Вопрос непонятен. Вы просите перевести на русский язык терминологию Вашей задачи?

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение16.09.2014, 15:56 
нет,я прошу сказать,правильно ли я понимаю смысл детерминированного преобразования.

 
 
 
 Re: Задача по мат.статистике на полноту и достаточность
Сообщение16.09.2014, 19:49 
Аватара пользователя
Я не знаю, что в Вашем курсе лекций означает этот термин.

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group