Ну, это уже крайний релятивизм.
Это вообще не релятивизм. Это просто необходимое различение физических объектов и их математических моделей.
Ясно же, что имелось в виду, что в реальном мире есть то, что сопоставимо с абстрактными понятиями точки, прямой, плоскости и т.п.
Да. Точка — это модель колышка, вбитого в землю. Прямая — модель туго натянутой верёвки. Плоскость — модель ровной площадки. Попробуйте сказать, что прямая и верёвка — это одно и то же.
Я правильно понимаю, под трехмерным пространством здесь имелось в виду пространство, описываемое полной аксиоматикой Гильберта, а под двумерным - сокращенной для планарной геометрии (axiomatization of Euclidean plane geometry)?
Да.
Кстати, а как вводится понятие ориентации отрезка? И в чем проблема введения для двумерного случае, если для трехмерного такой проблемы нет?
Впервые слышу, что тут есть какая-то проблема. Отрезок ограничен двумя точками. Указываете, которая из них есть начало, а которая — конец отрезка, и получаете направленный (или ориентированный) отрезок. Размерность здесь вообще ни при чём.
Ну, как же нет. Ведь вы при ориентировании в пространстве вынуждены обращаться именно к трем прямым и соответствующим им трем числам, чтобы иметь возможность только с помощью "одной линейки" добраться до нужной точки.
Это ерунда. Для измерения расстояния никакие "три прямые" не нужны. Для этого нужны две точки и достаточно длинная линейка. "Прикладываете" к ним линейку и измеряете расстояние между точками. Другой вариант: натягиваете между точками верёвку, ставите на ней метки, а потом прикладываете к линейке. Когда-нибудь видели, как в магазине кусок провода нужной длины отмеряют?
Ну так в том вопрос и стоял, какие свойства нашего реального пространства приводят к тому, что его модель получается именно трехмерной.
Никакого "реального" пространства нет, есть только измерения расстояний. Вот свойства совокупности этих расстояний и определяют размерность пространства как модели этой совокупности расстояний, а также его евклидовость или неевклидовость пространства.
Грубо говоря, попали бы вы в другую вселенную, что бы делали, чтобы понять, какая модель (с какой алгебраической размерностью) соответствует тому пространству, в которое вы попали?
Нужно измерять расстояния между различными точками. Когда измерений накопится достаточное количество, будет ясно, какая размерность нужна для модели.
Замечательно. И как для четырехмерного случая ввести понятие направленного отрезка :) (Я пока и для трехмерного не знаю, как это делается)
См. выше.